搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力

周光雨 陈力 张鸿雁 崔海航

引用本文:
Citation:

基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力

周光雨, 陈力, 张鸿雁, 崔海航

Research on diffusiophoresis of self-propulsion Janus particles based on lattice Boltzmann method

Zhou Guang-Yu, Chen Li, Zhang Hong-Yan, Cui Hai-Hang
PDF
导出引用
  • Janus颗粒的自驱动力研究对于纳微米尺度驱动力课题具有重要意义,本文针对Pt-SiO2型Janus颗粒,基于格子Boltzmann模型及动量交换法提出了计算其扩散泳力的方法,通过与实验数据对比修正验证了模型准确性,并通过分析证明了此类Janus颗粒的扩散泳力与速度场无关,进一步模拟比较了不同形状颗粒的自驱运动. 分析发现,对于体积相等形状不同的Janus颗粒,扩散泳力主要由轴线投影面积决定,此外反应面积也会对扩散泳力产生影响.
    Studies of the driving force of the self-propulsion Janus particles are very important in the fields of micro-power and nano-motor. In this paper, we choose the micron Pt-SiO2-type Janus particle as a research object, which is propelled by self-generated concentration gradient in the dilute solution of H2O2, focusing on the self-propulsion of the single particle. According to the force analysis of the Janus particle, the surface force can be decomposed into the viscous resistance of the fluid, the Brownian force derived from the molecular thermal fluctuation, and the diffusiophoresis caused by the diffusion of the solute component. The main aim of this paper is to find the way to accurately simulate the diffusiophoresis generated by the huge concentration gradient on a microscale. The lattice Boltzmann method (LBM) is a modern mesoscopic method based on the microscopic particle characteristics of the fluid, which makes it more intuitive to deal with the interaction between the fluid and solid. It is more advantageous than the traditional numerical method in the description of this micro-interface dynamic problem, i.e., the self-propulsion of Janus particle. On a certain time scale, when the Janus particle shows the directional motion, the influence of the Brownian force can be ignored. Thus, the analytical process can be simplified. Based on the momentum theorem, the method of calculating the diffusiophoresis produced by concentration diffusion is proposed. We introduce the momentum exchange in the half-way bounce-back scheme of LBM into the model of the multicomponent diffusion and reaction. Through counting the surface force we can obtain the diffusiophoresis acting on the Janus particle. Moreover, this diffusiophoresis model is modified by comparing the experimental fluid resistance with simulated one. This comparision verifies the validity of the diffusiophoresis model. Then, the analysis of the variation of diffusiophoresis proves that the value of diffusiophoresis is independent of the fluid velocity. Through the further application of this model, the different shapes of Janus particles with the same volume are compared in simulations. The results show that the self-diffusiophoresis is mainly determined by the axial projection area. In addition, the reaction area of the particle also affects the value of the diffusiophoresis.
      通信作者: 陈力, jasonchencl@163.com
    • 基金项目: 国家自然科学基金应急管理项目(批准号:11447133)、国家自然科学基金青年科学基金(批准号:11602187)、陕西省自然科学基础研究计划青年人才项目(批准号:2016JQ1008)、陕西省教育厅专项科研计划(批准号:15JK1385)和西部绿色建筑国家重点实验室培育基地自主科研项目资助的课题.
      Corresponding author: Chen Li, jasonchencl@163.com
    • Funds: Project supported by the National Natural Science Foundation of China for Emergency Management Projects (Grant No. 11447133), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11602187), the Project of the Natural Science Foundation of Shaanxi Province for Youth Talent, China (Grant No. 2016JQ1008), the Scientific Research Program Funded by Shanxi Provincial Education Department, China (Grant No. 15JK1385), and the Project from State Key Laboratory of Building Science and Technology in Western China.
    [1]

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press) p399 (in Chinese) [赵亚溥 2012 表面与界物理力学 (北京: 科学版社) 第 399 页]

    [2]

    Soong R K, Bachand G D, Neves H P, Olkhovets A G, Craighead H G, Montemagno C D 2000 Science 290 1555

    [3]

    Wang W, Duan W, Ahmed S, Mallouk T E, Sen A 2013 Nano Today 8 531

    [4]

    Jiang S, Granick S, Schneider H J 2012 Janus Particle Synthesis, Self Assembly and Applications (USA: RSC Publishing Press) pp1-25

    [5]

    Chernyak V G, Starikov S A, Beresnev S A 2001 J. Appl. Mech. Tech. Phys. 42 445

    [6]

    Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A 2013 Nanoscale 5 1273

    [7]

    Rckner G, Kapral R 2007 Phys. Rev. Lett. 98 150603

    [8]

    Howse J R, Jones R A, Ryan A J, Gough T, Vafabakhsh R, Golestanian R 2007 Phys. Rev. Lett. 99 048102

    [9]

    Ke H, Ye S, Carroll R L, Showalter K 2010 J. Phys. Chem. A 114 5462

    [10]

    Zheng X, Hagen B T, Kaiser A, Wu M, Cui H H, Silber-Li Z, Lwen H 2013 Phys. Rev. E 88 032304

    [11]

    Gong C L 2013 M. S. Thesis ( Xian: Xi'an University of Architecture and Technology) (in Chinese) [宫春亮 2013 硕士学位论文 (西安: 西安建筑科技大学)]

    [12]

    Crdova-Figueroa U M, Brady J F 2008 Phys. Rev. Lett. 100 158303

    [13]

    de Buyl P, Kapral R 2013 Nanoscale 5 1337

    [14]

    Hu J, Zhang H Y, Zheng X, Cui H H 2014 Chinese J. Hydrodynamics 04 377 (in Chinese) [胡静, 张鸿雁, 郑旭, 崔海航 2014 水动力学研究与进展 04 377]

    [15]

    Cui H H, Tan X J, Zhang H Y 2014 Nanotechnology and Precision Engineering 12 340 (in Chinese) [崔海航, 谭晓君, 张鸿雁 2014 纳米技术与精密工程 12 340]

    [16]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p10 (in Chinese) [郭照立, 郑楚光 2009 格子Boltzmann 方法的原理及应用(北京: 科学出版社) 第 10 页]

    [17]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [18]

    Shan X, Doolen G 1995 J. Stat. Phys. 81 379

    [19]

    Zhang R L, Di Q W, Wang X L, Ding W P, Gong W 2012 Mechanics in Engineering 2 10 (in Chinese) [张任良, 狄勤丰, 王新亮, 丁伟朋, 龚玮 2012 力学与实践 2 10]

    [20]

    Shi D Y, Wang Z K, Zhang A M 2014 Acta Phys. Sin. 63 07403 (in Chinese) [史冬岩, 王志凯, 张阿漫 2014 物理学报 63 074703]

    [21]

    Wang L L, Cui H H, Zhang J, Zheng X, Wang L, Chen L 2016 Acta Phys. Sin. 65 220201 (in Chinese) [王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力 2016 物理学报 65 220201]

    [22]

    Wu M L 2014 M. S. Thesis (Xi'an: Xi'an University of Architecture and Technology) (in Chinese) [武美玲 2014 硕士学位论文 (西安: 西安建筑科技大学)]

    [23]

    Cui H H, Tan X J, Zhang H Y, Chen L 2015 Acta Phys. Sin. 64 134705 (in Chinese) [崔海航, 谭晓君, 张鸿雁, 陈力 2015 物理学报 64 134705]

    [24]

    Casson V, Maschio G 2011 Ind. Eng. Chem. Res. 51 7526

    [25]

    Ladd A J C 1994 J. Fluid Mech. 271 285

    [26]

    Ladd A J C 1994 J. Fluid Mech. 271 311

    [27]

    Zhang T 2001 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [张婷 2012 博士学位论文 (武汉: 华中科技大学)]

  • [1]

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press) p399 (in Chinese) [赵亚溥 2012 表面与界物理力学 (北京: 科学版社) 第 399 页]

    [2]

    Soong R K, Bachand G D, Neves H P, Olkhovets A G, Craighead H G, Montemagno C D 2000 Science 290 1555

    [3]

    Wang W, Duan W, Ahmed S, Mallouk T E, Sen A 2013 Nano Today 8 531

    [4]

    Jiang S, Granick S, Schneider H J 2012 Janus Particle Synthesis, Self Assembly and Applications (USA: RSC Publishing Press) pp1-25

    [5]

    Chernyak V G, Starikov S A, Beresnev S A 2001 J. Appl. Mech. Tech. Phys. 42 445

    [6]

    Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A 2013 Nanoscale 5 1273

    [7]

    Rckner G, Kapral R 2007 Phys. Rev. Lett. 98 150603

    [8]

    Howse J R, Jones R A, Ryan A J, Gough T, Vafabakhsh R, Golestanian R 2007 Phys. Rev. Lett. 99 048102

    [9]

    Ke H, Ye S, Carroll R L, Showalter K 2010 J. Phys. Chem. A 114 5462

    [10]

    Zheng X, Hagen B T, Kaiser A, Wu M, Cui H H, Silber-Li Z, Lwen H 2013 Phys. Rev. E 88 032304

    [11]

    Gong C L 2013 M. S. Thesis ( Xian: Xi'an University of Architecture and Technology) (in Chinese) [宫春亮 2013 硕士学位论文 (西安: 西安建筑科技大学)]

    [12]

    Crdova-Figueroa U M, Brady J F 2008 Phys. Rev. Lett. 100 158303

    [13]

    de Buyl P, Kapral R 2013 Nanoscale 5 1337

    [14]

    Hu J, Zhang H Y, Zheng X, Cui H H 2014 Chinese J. Hydrodynamics 04 377 (in Chinese) [胡静, 张鸿雁, 郑旭, 崔海航 2014 水动力学研究与进展 04 377]

    [15]

    Cui H H, Tan X J, Zhang H Y 2014 Nanotechnology and Precision Engineering 12 340 (in Chinese) [崔海航, 谭晓君, 张鸿雁 2014 纳米技术与精密工程 12 340]

    [16]

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p10 (in Chinese) [郭照立, 郑楚光 2009 格子Boltzmann 方法的原理及应用(北京: 科学出版社) 第 10 页]

    [17]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [18]

    Shan X, Doolen G 1995 J. Stat. Phys. 81 379

    [19]

    Zhang R L, Di Q W, Wang X L, Ding W P, Gong W 2012 Mechanics in Engineering 2 10 (in Chinese) [张任良, 狄勤丰, 王新亮, 丁伟朋, 龚玮 2012 力学与实践 2 10]

    [20]

    Shi D Y, Wang Z K, Zhang A M 2014 Acta Phys. Sin. 63 07403 (in Chinese) [史冬岩, 王志凯, 张阿漫 2014 物理学报 63 074703]

    [21]

    Wang L L, Cui H H, Zhang J, Zheng X, Wang L, Chen L 2016 Acta Phys. Sin. 65 220201 (in Chinese) [王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力 2016 物理学报 65 220201]

    [22]

    Wu M L 2014 M. S. Thesis (Xi'an: Xi'an University of Architecture and Technology) (in Chinese) [武美玲 2014 硕士学位论文 (西安: 西安建筑科技大学)]

    [23]

    Cui H H, Tan X J, Zhang H Y, Chen L 2015 Acta Phys. Sin. 64 134705 (in Chinese) [崔海航, 谭晓君, 张鸿雁, 陈力 2015 物理学报 64 134705]

    [24]

    Casson V, Maschio G 2011 Ind. Eng. Chem. Res. 51 7526

    [25]

    Ladd A J C 1994 J. Fluid Mech. 271 285

    [26]

    Ladd A J C 1994 J. Fluid Mech. 271 311

    [27]

    Zhang T 2001 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [张婷 2012 博士学位论文 (武汉: 华中科技大学)]

  • [1] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维气泡群熟化过程模拟. 物理学报, 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [2] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维汽泡群熟化过程模拟. 物理学报, 2022, (): . doi: 10.7498/aps.71.20212183
    [3] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [4] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [5] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [6] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [7] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [8] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [9] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [10] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟. 物理学报, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [11] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流 . 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [12] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [13] 毛威, 郭照立, 王亮. 热对流条件下颗粒沉降的格子Boltzmann方法模拟. 物理学报, 2013, 62(8): 084703. doi: 10.7498/aps.62.084703
    [14] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [15] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [16] 张新明, 周超英, Islam Shams, 刘家琦. 用格子Boltzmann方法数值模拟三维空化现象. 物理学报, 2009, 58(12): 8406-8414. doi: 10.7498/aps.58.8406
    [17] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [18] 张超英, 李华兵, 谭惠丽, 刘慕仁, 孔令江. 椭圆柱体在牛顿流体中运动的格子Boltzmann方法模拟. 物理学报, 2005, 54(5): 1982-1987. doi: 10.7498/aps.54.1982
    [19] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
    [20] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
计量
  • 文章访问数:  3788
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-28
  • 修回日期:  2017-01-23
  • 刊出日期:  2017-04-05

基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力

  • 1. 西安建筑科技大学环境与市政工程学院, 西安 710055
  • 通信作者: 陈力, jasonchencl@163.com
    基金项目: 国家自然科学基金应急管理项目(批准号:11447133)、国家自然科学基金青年科学基金(批准号:11602187)、陕西省自然科学基础研究计划青年人才项目(批准号:2016JQ1008)、陕西省教育厅专项科研计划(批准号:15JK1385)和西部绿色建筑国家重点实验室培育基地自主科研项目资助的课题.

摘要: Janus颗粒的自驱动力研究对于纳微米尺度驱动力课题具有重要意义,本文针对Pt-SiO2型Janus颗粒,基于格子Boltzmann模型及动量交换法提出了计算其扩散泳力的方法,通过与实验数据对比修正验证了模型准确性,并通过分析证明了此类Janus颗粒的扩散泳力与速度场无关,进一步模拟比较了不同形状颗粒的自驱运动. 分析发现,对于体积相等形状不同的Janus颗粒,扩散泳力主要由轴线投影面积决定,此外反应面积也会对扩散泳力产生影响.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回