搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小粒径同质/异质壳层结构NaGdF4:3%Nd3+纳米颗粒的近红外发光特性

马文君 由芳田 彭洪尚 黄世华

引用本文:
Citation:

小粒径同质/异质壳层结构NaGdF4:3%Nd3+纳米颗粒的近红外发光特性

马文君, 由芳田, 彭洪尚, 黄世华

Near-infrared luminescence properties of small-sized homogeneous/heterogeneous core/shell structured NaGdF4:Nd3+ nanoparticles

Ma Wen-Jun, You Fang-Tian, Peng Hong-Shang, Huang Shi-Hua
PDF
导出引用
  • 采用共沉淀法制备了粒径小于5 nm的六方相NaGdF4:3%Nd3+纳米颗粒.纳米颗粒表面缺陷会使发光中心产生严重的淬灭,对其表面包覆适当厚度的壳层可以有效地减少发光淬灭,提高发光性能.对NaGdF4:3%Nd3+核心纳米颗粒分别进行同质和异质包覆并且通过调节核壳比制备了不同壳层厚度的NaGdF4:3%Nd3+@NaGdF4和NaGdF4:3%Nd3+@NaYF4纳米颗粒,研究了不同的壳层厚度对核心纳米颗粒发光的影响,并对两种不同核壳结构纳米颗粒的发光性能进行了对比.在808 nm近红外光激发下,NaGdF4:3%Nd3+纳米颗粒发射出位于约866,893,1060 nm的近红外发射.与核心纳米颗粒相比,核壳结构的纳米颗粒的荧光强度增强,荧光寿命增长,并且随着壳厚的增加,荧光强度出现先增强后减弱、荧光寿命逐步增长的趋势.与相同条件下同质包覆的NaGdF4:3%Nd3+@NaGdF4纳米颗粒相比,异质包覆的NaGdF4:3%Nd3+@NaYF4纳米颗粒光谱荧光强度增强,寿命增长.
    In recent years, considerable researches have focused on the upconversion phosphor nanoparticles in the application of biomedical imaging, which emit visible light. Nevertheless, these kinds of nanoparticles limit the light penetration depth and imaging quality. The Nd3+ doped nanoparticles excited and emitted in a spectral range of 700-1100~nm can overcome those shortcomings. Furthermore, considering the applications of rare earth nanoparticles in biomedical imaging, smaller particle size is needed. However, the luminescence efficiencies of nano-structured materials are lower due to the inherent drawback of high sensitivity of Nd3+ ions to the surface defects. So, it is of vital importance for introducing a shell with low phonon energy to be overgrown on the surface of nanoparticles. According to the ratio of core material to the shell, core/shell structured nanoparticles are separated into homogeneous and homogeneousnanoparticles. And the shell material may influence the luminescence performance. In few reports there have been made the comparisons of luminescence performance of Nd3+ between heterogeneous and homogeneous core/shell nanoparticles. In the present work, small-sized hexagonal NaGdF4:3%Nd3+ nanoparticles with an average size of sub-5~nm are synthesized by a coprecipitation method. To overcome the nanosize-induced surface defects and improve the luminous performance, the NaGdF4:3%Nd3+ nanoparticles are coated with homogeneous and heterogeneous shells, respectively. Core/shell structured nanoparticles with different values of shell thickness are synthesized by using the core/shell ratios of 1:2, 1:4 and 1:6. The luminescence properties of the prepared nanoparticles are characterized by photoluminescence spectra and fluorescence lifetimes. Under 808~nm excitation, the NaGdF4:3%Nd3+ nanoparticles exhibit nearinfrared emissions with sharp bands at ~866 nm, ~893 nm, ~1060 nm, which can be assigned to the transitions of 4F3/2 to 4I9/2, 4F2/3 to 4I11/2, respectively. The locations of emission peaks of the core/shell nanoparticles are in accordance with the those of cores while the fluorescence intensity increases significantly. In addition, the average lifetimes of Nd3+ ions at 866 nm of core/shell nanoparticles are longer than those of the cores, which indicates that the undoped shell can minimize the occurrence of unwanted surfac-related deactivations. Notably, comparing with the homogeneous NaGdF4:3%Nd3+@NaGdF4 nanoparticles, the fluorescence intensity of heterogeneous NaGdF4:3%Nd3+@NaYF4 nanoparticles is enhanced and their lifetimes become longer. It is due to the low stability of hexagonal NaYF4, which suppresses the nucleation of the shell precursor and makes the shell able to be fully coated on the core. The decrease of electron charge density on the surface of core/shell nanoparticles is also beneficial to shell growth and crystallization. The high crystallinity of heterogeneous core/shell structured nanoparticles can eliminate negative influence of surface effect more efficiently. In addition, the phonon energy of NaYF4 is lower than that of NaGdF4, which leads to low possibility of non-radiative cross-relaxation between Nd3+ ions, thereby improving the luminescence efficiency in the near in frared emission.
      通信作者: 由芳田, ftyou@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274038)和教育部新世纪优秀人才支持计划(批准号:12-0177)资助的课题.
      Corresponding author: You Fang-Tian, ftyou@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274038) and the New Century Excellent Talents in University, China (Grant No. 12-0177).
    [1]

    Weissleder R 2001 Nat. Biotechnol. 19 316

    [2]

    Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G 2010 Analyst 135 1839

    [3]

    Wang X, Xiao S, Bu Y, Ding J W 2009 J. Alloy. Compd. 477 941

    [4]

    Zhan Q Q, Qian J, Liang H J, Somesfalean G, Wang D, He S L, Zhang Z G, Andersson-Engels S 2011 ACS Nano 5 3744

    [5]

    Gao W, Dong J, Wang R B, Wang C J, Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese) [高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 物理学报 65 084205]

    [6]

    Ntziachristos V, Ripoll J, Wang L H V, Weissleder R 2005 Nat. Biotech. 23 313

    [7]

    Chen G Y, Ohulchanskyy T Y, Liu S, Law W C, Wu F, Swihart M T, Agren H, Prasad P N 2012 ACS Nano 6 2969

    [8]

    Smith A M, Mancini M C, Nie S M 2009 Nat. Nanotechnol. 4 710

    [9]

    Tallury P, Kar S, Snatra S, Bamrungsap S, Huang Y F, Tan W 2009 Chem. Commun. 7 2347

    [10]

    Zhou C, Long M, Qin Y, Sun X, Zheng J 2011 Angew. Chem. Int. Ed. Engl. 50 3172

    [11]

    Xie D N, Peng H S, Huang S H, You F T, Wang X H 2016 Acta Phys. Sin. 63 147801 (in Chinese) [谢蒂旎, 彭洪尚, 黄世华, 由芳田, 王小卉 2016 物理学报 63 147801]

    [12]

    Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924

    [13]

    Yu F D, Chen H, Zhao D, Qin G S, Qin W P 2014 Chin. J. Lumin. 35 166 (in Chinese) [于放达, 陈欢, 赵丹, 秦冠仕, 秦伟平 2014 发光学报 35 166]

    [14]

    Li X K, You F T, Peng H S, Huang S H 2016 J. Nanosci. Nanotechnol. 16 3940

    [15]

    Xie D N, Peng H S, Huang S H, You F T 2013 J. Nanomater. 2013 891515

    [16]

    Naduviledathu Raj A, Rinel T, Haase M 2014 Chem. Mater. 26 5689

    [17]

    Wang J, Song H, Xu W, Dong B, Xu S, Chen B, Yu W, Zhang S 2013 Nanoscal. 5 3412

    [18]

    Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P, Yan C H 2006 J. Am. Chem. Soc. 128 6426

    [19]

    Wang F, Han Y, Lim C S, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X 2010 Nature 463 1061

    [20]

    Lei L, Chen D, Huang P, Xu J, Zhang R, Wang Y 2013 Nanoscale 5 11305

    [21]

    Huang K, Jayakumar M K G, Zhang Y 2015 J. Mater. Chem. C 3 10267

    [22]

    Hu P, Wu X F, Hu S G, Chen Z H, Yan H Y, Xi Z F, Yu Y, Dai G T, Liu Y X 2016 Photochem. Photobiol. Sci. 15 260

    [23]

    Bednarkiewicz A, Wawrzynczyk D, Nyk M, Strek W 2011 App. Phys. B 103 84

  • [1]

    Weissleder R 2001 Nat. Biotechnol. 19 316

    [2]

    Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G 2010 Analyst 135 1839

    [3]

    Wang X, Xiao S, Bu Y, Ding J W 2009 J. Alloy. Compd. 477 941

    [4]

    Zhan Q Q, Qian J, Liang H J, Somesfalean G, Wang D, He S L, Zhang Z G, Andersson-Engels S 2011 ACS Nano 5 3744

    [5]

    Gao W, Dong J, Wang R B, Wang C J, Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese) [高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 物理学报 65 084205]

    [6]

    Ntziachristos V, Ripoll J, Wang L H V, Weissleder R 2005 Nat. Biotech. 23 313

    [7]

    Chen G Y, Ohulchanskyy T Y, Liu S, Law W C, Wu F, Swihart M T, Agren H, Prasad P N 2012 ACS Nano 6 2969

    [8]

    Smith A M, Mancini M C, Nie S M 2009 Nat. Nanotechnol. 4 710

    [9]

    Tallury P, Kar S, Snatra S, Bamrungsap S, Huang Y F, Tan W 2009 Chem. Commun. 7 2347

    [10]

    Zhou C, Long M, Qin Y, Sun X, Zheng J 2011 Angew. Chem. Int. Ed. Engl. 50 3172

    [11]

    Xie D N, Peng H S, Huang S H, You F T, Wang X H 2016 Acta Phys. Sin. 63 147801 (in Chinese) [谢蒂旎, 彭洪尚, 黄世华, 由芳田, 王小卉 2016 物理学报 63 147801]

    [12]

    Vetrone F, Naccache R, Mahalingam V, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924

    [13]

    Yu F D, Chen H, Zhao D, Qin G S, Qin W P 2014 Chin. J. Lumin. 35 166 (in Chinese) [于放达, 陈欢, 赵丹, 秦冠仕, 秦伟平 2014 发光学报 35 166]

    [14]

    Li X K, You F T, Peng H S, Huang S H 2016 J. Nanosci. Nanotechnol. 16 3940

    [15]

    Xie D N, Peng H S, Huang S H, You F T 2013 J. Nanomater. 2013 891515

    [16]

    Naduviledathu Raj A, Rinel T, Haase M 2014 Chem. Mater. 26 5689

    [17]

    Wang J, Song H, Xu W, Dong B, Xu S, Chen B, Yu W, Zhang S 2013 Nanoscal. 5 3412

    [18]

    Mai H X, Zhang Y W, Si R, Yan Z G, Sun L D, You L P, Yan C H 2006 J. Am. Chem. Soc. 128 6426

    [19]

    Wang F, Han Y, Lim C S, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X 2010 Nature 463 1061

    [20]

    Lei L, Chen D, Huang P, Xu J, Zhang R, Wang Y 2013 Nanoscale 5 11305

    [21]

    Huang K, Jayakumar M K G, Zhang Y 2015 J. Mater. Chem. C 3 10267

    [22]

    Hu P, Wu X F, Hu S G, Chen Z H, Yan H Y, Xi Z F, Yu Y, Dai G T, Liu Y X 2016 Photochem. Photobiol. Sci. 15 260

    [23]

    Bednarkiewicz A, Wawrzynczyk D, Nyk M, Strek W 2011 App. Phys. B 103 84

  • [1] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射. 物理学报, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [2] 高伟, 张晶晶, 韩珊珊, 邢宇, 邵琳, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 单颗粒NaYF4核壳结构的能量传递特性. 物理学报, 2022, 71(23): 234206. doi: 10.7498/aps.71.20221454
    [3] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [4] 董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟. 构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射. 物理学报, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [5] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211719
    [6] 张佳晨, 鱼卫星, 肖发俊, 赵建林. 金薄膜衬底上介质-金属核壳结构的光学力调控. 物理学报, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [7] 严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟. 构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射. 物理学报, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [8] 彭方, 张庆礼, 王小飞, 张会丽, 丁守军, 刘文鹏, 罗建乔, 孙敦陆, 孙贵花. Nd3+:SrY2O4粉体的制备、结构与光谱性能研究. 物理学报, 2016, 65(1): 014211. doi: 10.7498/aps.65.014211
    [9] 李志文, 何学敏, 颜士明, 宋雪银, 乔文, 张星, 钟伟, 都有为. -Fe2O3/NiO核-壳纳米花的合成、微结构与磁性. 物理学报, 2016, 65(14): 147101. doi: 10.7498/aps.65.147101
    [10] 熊中龙, 吴妍, 景锐平, 马冲, 龙蔚辉, 张超军, 程永进. 掺Yb硅酸盐玻璃的热漂白性能研究. 物理学报, 2016, 65(4): 044208. doi: 10.7498/aps.65.044208
    [11] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [12] 谢蒂旎, 彭洪尚, 黄世华, 由芳田, 王小卉. 水热法促进EuVO4@YVO4核壳结构纳米颗粒中Eu3+的扩散及其对发光性能的影响. 物理学报, 2014, 63(14): 147801. doi: 10.7498/aps.63.147801
    [13] 刘军芳, 苏良碧, 徐军. Bi2O3-B2O3-BaO玻璃的制备及其近红外发光性能的研究. 物理学报, 2013, 62(3): 037804. doi: 10.7498/aps.62.037804
    [14] 李永进, 宋志国, 李臣, 万荣华, 邱建备, 杨正文, 尹兆益, 王雪, 王齐, 周大成, 杨勇. 结构自还原效应对铋掺碱土金属硅磷铝硼玻璃超宽带近红外发光的影响. 物理学报, 2013, 62(11): 117801. doi: 10.7498/aps.62.117801
    [15] 舒明飞, 尚玉黎, 陈威, 曹万强. 核壳结构对弛豫铁电体介电行为的影响. 物理学报, 2012, 61(17): 177701. doi: 10.7498/aps.61.177701
    [16] 刘军芳, 苏良碧, 唐慧丽, 徐军. 掺铋离子BaO-B2O3玻璃的制备及其近红外发光性能的研究. 物理学报, 2012, 61(12): 127806. doi: 10.7498/aps.61.127806
    [17] 周大成, 刘志亮, 宋志国, 杨正文, 何禧佳, 王荣飞, 焦清, 邱建备. 铋离子掺杂RO-Al2O3-SiO2玻璃近红外超宽带发光性质. 物理学报, 2012, 61(12): 127802. doi: 10.7498/aps.61.127802
    [18] 周朋, 苏良碧, 李红军, 喻军, 郑丽和, 杨秋红, 徐军. 掺铋BaF2晶体的制备及其近红外发光研究. 物理学报, 2010, 59(4): 2827-2830. doi: 10.7498/aps.59.2827
    [19] 熊涛, 高传波, 陈祥磊, 周先意, 翁惠民, 曹方宇, 叶邦角, 韩荣典, 杜淮江. Fe3O4-C核壳型纳米纤维的正电子研究. 物理学报, 2009, 58(10): 6946-6950. doi: 10.7498/aps.58.6946
    [20] 于敏. 关于重原子核的壳结构理论. 物理学报, 1959, 15(8): 420-439. doi: 10.7498/aps.15.420
计量
  • 文章访问数:  5667
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-16
  • 修回日期:  2017-03-13
  • 刊出日期:  2017-05-05

/

返回文章
返回