搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器

王小发 张俊红 高子叶 夏光琼 吴正茂

引用本文:
Citation:

基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器

王小发, 张俊红, 高子叶, 夏光琼, 吴正茂

Nanosecond mode-locked Tm-doped fiber laser based on graphene saturable absorber

Wang Xiao-Fa, Zhang Jun-Hong, Gao Zi-Ye, Xia Guang-Qiong, Wu Zheng-Mao
PDF
导出引用
  • 报道了一种基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器.该激光器采用环形腔结构,利用自制的三层石墨烯薄膜作为可饱和吸收体实现锁模.同时在腔内插入一个窄带光纤光栅,约束腔内起振的纵模数,适当调节抽运功率和偏振控制器的角度,得到了重复频率为3.8 MHz、脉宽在3.8-94.3 ns之间灵活可调的2 μm纳秒锁模脉冲输出,整个脉宽调节范围超过90 ns.此外,由于获得的兆赫兹纳秒锁模脉冲时间带宽积在49-1119范围内,即存在强烈的啁啾,因而可作为2 μm波段啁啾脉冲放大系统中的种子源使用.
    The Tm-doped mode-locked pulsed fiber lasers, which are known for their wide applications in optical communication, laser medical system and special material processing, have attracted considerable interest as novel laser sources. Up to now, many reported Tm-doped mode-locked fiber lasers focused on emitting picosecond or femtosecond pulses at a few megahertz (MHz) repetition rate. Actually, due to the strong chirp, large pulse width, low peak power and little nonlinear phase accumulation characteristics in the process of power amplifier, nanosecond mode-locked fiber laser is a representative of ideal seed source in the chirped pulse amplification (CPA) system. However, nanosecond mode-locked fiber lasers are generally implemented with the kilometerlong cavity length, corresponding to the fundamental repetition rate of hundreds of kilohertz. Usually, fiber lasers with such a low repetition rate are not desirable in applications of laser material processing, nor medical treatment nor scientific researches. In this paper, we report a nanosecond mode-locked Tm-doped fiber laser with MHz repetition rate based on graphene saturable absorber (SA). As the SA, graphene has excellent optical properties, such as optical visualization, high transparency, ultra-fast relaxation time and nonlinear absorption. It is not limited by the band gap either because of its zero-band-gap structure. Therefore, graphene can be used as fast SA, with wide spectral range operated. Generally, graphene suitable for mode-locked fiber lasers can be produced by using chemical vapor deposition (CVD), liquid phase exfoliation and mechanical exfoliation. Since the CVD technique can obtain high-quality graphene with precisely controlled number of layers, it is always the first choice for the manufacture of graphene. In our work, monolayer graphene layers are grown on copper foils by CVD, and then transferred onto the end face of the fiber connector three times. Meanwhile, a narrow-band fiber Bragg grating is used to constrain longitudinal modes of the laser intra-cavity. By simply adjusting the pump power and the polarization angle of polarization controller, stable 2 μm nanosecond mode-locked pulses are obtained in a wide range from 3.8 ns to 94.3 ns at 3.8 MHz repetition rate. We believe that the results obtained will be helpful for investigating the CPA system at 2 μm.
      通信作者: 吴正茂, zmwu@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11304409,61475127,61575163)、重庆市自然科学基金(批准号:CSTC2013jcyjA4004)、重庆市教委科学技术研究项目(批准号:KJ1500422)和液晶面板产业共性技术创新专题项目(批准号:CSTC2015zdcy-ztzx40003)资助的课题.
      Corresponding author: Wu Zheng-Mao, zmwu@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304409, 61475127, 61575163), the Natural Science Foundation of Chongqing City, China (Grant No. CSTC2013jcyjA4004), the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1500422), and the Special Theme Projects on LCD Industrial Generic Technology Innovation of Chongqing, China (Grant No. CSTC2015zdcy-ztzx40003).
    [1]

    Wang Q, Geng J, Luo T, Jiang S 2009 Opt. Lett. 34 3616

    [2]

    Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150

    [3]

    Yang N, Tang Y, Xu J 2015 Laser Phys. Lett. 12 085102

    [4]

    Kieu K, Wise F 2009 Lasers and Electro-Optics Baltimore, Maryland USA, June 2-4 2009 pCML7

    [5]

    Wang Y, Alam S, Obraztsova E, Pozharov A, Set S, Yamashita S 2016 Opt. Lett. 41 3864

    [6]

    Yan Z Y, Li X H, Tang Y L, Shum P, Zhang Y, Wang Q J 2015 Opt. Express 23 4369

    [7]

    Wang Q Q, Chen T, Chen K 2010 Lasers and Electro-Optics San Jose, California, USA, May 16-21, 2010 pCFK7

    [8]

    Rudy C, Urbanek K, Digonnet M, Byer R 2013 J. Lightwave Technol. 31 1809

    [9]

    Jin X X, Wang X, Wang X, Zhou P 2015 Appl. Opt. 54 8260

    [10]

    Huang S S, Wang Y G, Yan P G, Zhang G L, Li H Q, Lin R Y 2014 Laser Phys. 24 015001

    [11]

    Huang S S, Wang Y G, Yan P G, Zhao J Q, Li H Q, Lin R Y 2014 Opt. Express 22 11417

    [12]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611

    [13]

    Bao Q, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang Y T 2009 Adv. Funct. Mater. 19 3077

    [14]

    Zhang M, Kelleher E, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A, Popov S, Taylor J 2012 Opt. Express 20 25077

    [15]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2013 Opt. Express 21 12797

    [16]

    Wang Q Q, Chen T, Zhang B, Li M S, Lu Y F, Chen K 2013 Appl. Phys. Lett. 102 131117

    [17]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2015 Opt. Express 23 9339

    [18]

    Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L, Abramski K 2015 Photon. Res. 3 119

    [19]

    Ismail M A, Harun S W, Zulkepely N R, Nor R M, Ahmad F, Ahmad H 2012 Appl. Opt. 51 8621

    [20]

    Kelleher E, Travers J, Sun Z, Rozhin A, Ferrari A 2009 Appl. Phys. Lett. 95 111108

    [21]

    Zhang X M, Gu C, Chen G L, Sun B, Xu L X, Wang A T, Ming H 2012 Opt. Lett. 37 1334

    [22]

    Xu J, Wu S D, Liu J, Wang Q, Yang Q H, Wang P 2012 Opt. Commun. 285 4466

    [23]

    Kobtsev S, Kukarin S, Fedotov Y 2008 Opt. Express 16 21936

    [24]

    Liu Z B, He X Y, Wang D N 2011 Opt. Lett. 36 3024

    [25]

    Azooz S, Harun S, Ahmad H, Halder A, Paul M, Pal M, Bhadra S 2015 Chin. Phys. Lett. 32 014204

    [26]

    Wang X, Zhou P, Wang X L, Xiao H, Liu Z J 2014 Opt. Express 22 6147

    [27]

    Fu B, Gui L, Li X, Xiao X S, Zhu H W, Yang C X 2013 IEEE Photon. Tech. L. 25 1447

    [28]

    Wang W R, Zhou Y X, Li T, Wang Y L, Xie X M 2012 Acta Phys. Sin. 61 038702 (in Chinese) [王文荣, 周玉修, 李铁, 王跃林, 谢晓明 2012 物理学报 61 038702]

    [29]

    Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Geim A 2006 Phys. Rev. Lett. 97 187401

    [30]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C 2007 Nano Lett. 7 238

    [31]

    Liu J, Xu J, Wang P 2012 IEEE Photon. Tech. Lett. 24 539

    [32]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Zhang G L, Li H Q, Tsang Y H 2013 Laser Phys. 23 075105

    [33]

    Jin C, Yang S G, Wang X J, Chen H W, Chen M H, Xie S Z 2016 IEEE Photon. Tech. Lett. 28 1352

    [34]

    Kelleher E, Travers J, Ippen E, Sun Z, Ferrari A, Popov S, Taylor J 2009 Opt. Lett. 34 3526

  • [1]

    Wang Q, Geng J, Luo T, Jiang S 2009 Opt. Lett. 34 3616

    [2]

    Liu J, Xu J, Liu K, Tan F, Wang P 2013 Opt. Lett. 38 4150

    [3]

    Yang N, Tang Y, Xu J 2015 Laser Phys. Lett. 12 085102

    [4]

    Kieu K, Wise F 2009 Lasers and Electro-Optics Baltimore, Maryland USA, June 2-4 2009 pCML7

    [5]

    Wang Y, Alam S, Obraztsova E, Pozharov A, Set S, Yamashita S 2016 Opt. Lett. 41 3864

    [6]

    Yan Z Y, Li X H, Tang Y L, Shum P, Zhang Y, Wang Q J 2015 Opt. Express 23 4369

    [7]

    Wang Q Q, Chen T, Chen K 2010 Lasers and Electro-Optics San Jose, California, USA, May 16-21, 2010 pCFK7

    [8]

    Rudy C, Urbanek K, Digonnet M, Byer R 2013 J. Lightwave Technol. 31 1809

    [9]

    Jin X X, Wang X, Wang X, Zhou P 2015 Appl. Opt. 54 8260

    [10]

    Huang S S, Wang Y G, Yan P G, Zhang G L, Li H Q, Lin R Y 2014 Laser Phys. 24 015001

    [11]

    Huang S S, Wang Y G, Yan P G, Zhao J Q, Li H Q, Lin R Y 2014 Opt. Express 22 11417

    [12]

    Bonaccorso F, Sun Z, Hasan T, Ferrari A C 2010 Nature Photon. 4 611

    [13]

    Bao Q, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang Y T 2009 Adv. Funct. Mater. 19 3077

    [14]

    Zhang M, Kelleher E, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A, Popov S, Taylor J 2012 Opt. Express 20 25077

    [15]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2013 Opt. Express 21 12797

    [16]

    Wang Q Q, Chen T, Zhang B, Li M S, Lu Y F, Chen K 2013 Appl. Phys. Lett. 102 131117

    [17]

    Sobon G, Sotor J, Pasternak I, Krajewska A, Strupinski W, Abramski K 2015 Opt. Express 23 9339

    [18]

    Boguslawski J, Sotor J, Sobon G, Kozinski R, Librant K, Aksienionek M, Lipinska L, Abramski K 2015 Photon. Res. 3 119

    [19]

    Ismail M A, Harun S W, Zulkepely N R, Nor R M, Ahmad F, Ahmad H 2012 Appl. Opt. 51 8621

    [20]

    Kelleher E, Travers J, Sun Z, Rozhin A, Ferrari A 2009 Appl. Phys. Lett. 95 111108

    [21]

    Zhang X M, Gu C, Chen G L, Sun B, Xu L X, Wang A T, Ming H 2012 Opt. Lett. 37 1334

    [22]

    Xu J, Wu S D, Liu J, Wang Q, Yang Q H, Wang P 2012 Opt. Commun. 285 4466

    [23]

    Kobtsev S, Kukarin S, Fedotov Y 2008 Opt. Express 16 21936

    [24]

    Liu Z B, He X Y, Wang D N 2011 Opt. Lett. 36 3024

    [25]

    Azooz S, Harun S, Ahmad H, Halder A, Paul M, Pal M, Bhadra S 2015 Chin. Phys. Lett. 32 014204

    [26]

    Wang X, Zhou P, Wang X L, Xiao H, Liu Z J 2014 Opt. Express 22 6147

    [27]

    Fu B, Gui L, Li X, Xiao X S, Zhu H W, Yang C X 2013 IEEE Photon. Tech. L. 25 1447

    [28]

    Wang W R, Zhou Y X, Li T, Wang Y L, Xie X M 2012 Acta Phys. Sin. 61 038702 (in Chinese) [王文荣, 周玉修, 李铁, 王跃林, 谢晓明 2012 物理学报 61 038702]

    [29]

    Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Geim A 2006 Phys. Rev. Lett. 97 187401

    [30]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C 2007 Nano Lett. 7 238

    [31]

    Liu J, Xu J, Wang P 2012 IEEE Photon. Tech. Lett. 24 539

    [32]

    Zhao J Q, Wang Y G, Yan P G, Ruan S C, Zhang G L, Li H Q, Tsang Y H 2013 Laser Phys. 23 075105

    [33]

    Jin C, Yang S G, Wang X J, Chen H W, Chen M H, Xie S Z 2016 IEEE Photon. Tech. Lett. 28 1352

    [34]

    Kelleher E, Travers J, Ippen E, Sun Z, Ferrari A, Popov S, Taylor J 2009 Opt. Lett. 34 3526

  • [1] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标. 基于宽带可调谐、窄线宽掺铥光纤激光器的两微米波段水的超光谱吸收测量. 物理学报, 2022, (): . doi: 10.7498/aps.71.20212127
    [2] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [3] 刘家兴, 刘侠, 钟守东, 王健强, 张大鹏, 王兴龙. 光纤光栅对的参数匹配与激光输出特性. 物理学报, 2019, 68(11): 114205. doi: 10.7498/aps.68.20190178
    [4] 张法业, 姜明顺, 隋青美, 吕珊珊, 贾磊. 基于光纤光栅的冲击激励声发射响应机理与定位方法研究. 物理学报, 2017, 66(7): 074210. doi: 10.7498/aps.66.074210
    [5] 张伟刚, 张严昕, 耿鹏程, 王标, 李晓兰, 王松, 严铁毅. 新型长周期光纤光栅的设计与研制进展. 物理学报, 2017, 66(7): 070704. doi: 10.7498/aps.66.070704
    [6] 毕卫红, 王圆圆, 付广伟, 王晓愚, 李彩丽. 基于石墨烯涂覆空心光纤电光调制特性的研究. 物理学报, 2016, 65(4): 047801. doi: 10.7498/aps.65.047801
    [7] 李政颖, 孙文丰, 李子墨, 王洪海. 基于色散补偿光纤的高速光纤光栅解调方法. 物理学报, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [8] 冯秋燕, 姚佰承, 周金浩, 夏汉定, 范孟秋, 张黎, 吴宇, 饶云江. 基于飞秒激光抽运的石墨烯包裹微光纤波导结构的级联四波混频研究. 物理学报, 2015, 64(18): 184214. doi: 10.7498/aps.64.184214
    [9] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [10] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [11] 周仁来, 鞠有伦, 杨超, 王巍, 王月珠. 一种对双包层大芯径光纤光栅反射率和纤芯折射率调制估算的方法. 物理学报, 2012, 61(24): 244205. doi: 10.7498/aps.61.244205
    [12] 齐跃峰, 乔汉平, 毕卫红, 刘燕燕. 热激法光子晶体光纤光栅制备工艺中热传导特性研究. 物理学报, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [13] 朱涛, 宋韵, 饶云江, 朱永. CO2激光写入旋转折变型长周期光纤光栅的制作及理论分析. 物理学报, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [14] 朱 涛, 饶云江, 莫秋菊, 王久玲. 高频CO2激光脉冲写入超长周期光纤光栅特性研究. 物理学报, 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [15] 谭中伟, 曹继红, 陈 勇, 刘 艳, 宁提纲, 简水生. 低串扰的多波长光纤光栅色散补偿器. 物理学报, 2007, 56(1): 274-279. doi: 10.7498/aps.56.274
    [16] 董小伟, 裴 丽, 简水生. 非对称熔锥法制作光纤光栅辅助耦合器型上下话路滤波器. 物理学报, 2006, 55(9): 4739-4743. doi: 10.7498/aps.55.4739
    [17] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [18] 裴 丽, 宁提纲, 李唐军, 董小伟, 简水生. 高速光通信系统中光纤光栅色散补偿研究. 物理学报, 2005, 54(4): 1630-1635. doi: 10.7498/aps.54.1630
    [19] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验. 物理学报, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
    [20] 韩 群, 吕可诚, 李家方, 李乙钢, 陈胜平1. 一种新颖的光纤光栅温度调谐装置的原理与实验研究. 物理学报, 2004, 53(12): 4253-4256. doi: 10.7498/aps.53.4253
计量
  • 文章访问数:  3302
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-14
  • 修回日期:  2017-04-06
  • 刊出日期:  2017-06-05

基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器

  • 1. 西南大学物理科学与技术学院, 重庆 400715;
  • 2. 重庆邮电大学光电工程学院, 重庆高校光通信技术重点实验室, 重庆 400065;
  • 3. 西南大学数学与统计学院, 重庆 400715
  • 通信作者: 吴正茂, zmwu@swu.edu.cn
    基金项目: 国家自然科学基金(批准号:11304409,61475127,61575163)、重庆市自然科学基金(批准号:CSTC2013jcyjA4004)、重庆市教委科学技术研究项目(批准号:KJ1500422)和液晶面板产业共性技术创新专题项目(批准号:CSTC2015zdcy-ztzx40003)资助的课题.

摘要: 报道了一种基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器.该激光器采用环形腔结构,利用自制的三层石墨烯薄膜作为可饱和吸收体实现锁模.同时在腔内插入一个窄带光纤光栅,约束腔内起振的纵模数,适当调节抽运功率和偏振控制器的角度,得到了重复频率为3.8 MHz、脉宽在3.8-94.3 ns之间灵活可调的2 μm纳秒锁模脉冲输出,整个脉宽调节范围超过90 ns.此外,由于获得的兆赫兹纳秒锁模脉冲时间带宽积在49-1119范围内,即存在强烈的啁啾,因而可作为2 μm波段啁啾脉冲放大系统中的种子源使用.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回