搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂对金属-MoS2界面性质调制的第一性原理研究

陶鹏程 黄燕 周孝好 陈效双 陆卫

引用本文:
Citation:

掺杂对金属-MoS2界面性质调制的第一性原理研究

陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫

First principles investigation of the tuning in metal-MoS2 interface induced by doping

Tao Peng-Cheng, Huang Yan, Zhou Xiao-Hao, Chen Xiao-Shuang, Lu Wei
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理赝势平面波方法,计算了卤族元素掺杂对金属-MoS2界面性质的影响,包括缺陷形成能、电子能带结构、差分电荷密度以及电荷布居分布.计算结果表明:卤族元素原子倾向于占据单层MoS2表面的S原子位置;对于单层MoS2而言,卤族元素的掺杂将在禁带中引入杂质能级以及导致费米能级位置的移动.对于金属-MoS2界面体系,结合Schottky-Mott模型,证明了卤族元素的掺杂可以有效地调制金属-MoS2界面间的肖特基势垒高度.发现F和Cl原子的掺杂将会降低体系的肖特基势垒高度.相比之下,Br和I原子的掺杂却增大了体系的肖特基势垒高度.通过差分电荷密度和布居分布的分析,阐明了肖特基势垒高度的被调制是因为电荷转移形成的界面偶极矩的作用导致.研究结果解释了相关实验现象,并给二维材料的器件化应用提供了调节手段.
    Two-dimensional (2D) materials have shown great potential for electronic and optoelectronic applications. Among the 2D materials, molybdenum disulfide (MoS2) has received great attention in the transition metal dichalcogenides family. Unlike graphene, 2D MoS2 can exhibit semiconducting properties and its band gap is tunable with thickness. A demonstration of a single-layer MoS2 based field-effect transistor (FET) with a high on/off current ratio (about 108) has aroused the considerable interest. Although 2D MoS2 exhibits fascinating intrinsic properties for electronics, the contact may limit the device performance severely. In a real device such as FET, semiconducting 2D MoS2 needs contact with a metal electrode, and a Schottky barrier is always formed at the semiconductor-metal interface. The formation of low-resistance contact is a challenge, which is important for achieving high on current, large photoresponse and high-frequency operation. Therefore, understanding and tuning the interfaces formed between metals and 2D MoS2 is critical to controlling the contact resistance. In this work, some efforts have been made to investigate the 2D MoS2-metal interface in order to reduce the Schottky barrier height. By using the first-principles calculations based on density function theory, we investigate the effects of halogen doping-on metal-MoS2 interface, including the formation energy of defect, electronic structure, charge difference, and population. All calculations are performed using the ultrasoft pseudopotential plane wave method implemented in the CASTEP code. We use the generalized gradient approximation for the exchange and correlation potential as proposed by Perdew-Burke-Ernzerhof. Firstly, we calculate the formation energy to find the thermodynamically stable positions for the halogen elements located in 2D MoS2. It is shown that the halogen elements tend to occupy the S site of a MoS2 monolayer. Meanwhile, for the MoS2 monolayer, the halogen doping may introduce the defect level into the forbidden gap and make the Fermi level shift. For the metal-MoS2 interface, halogen doping can modulate its Schottky barrier height effectively in terms of Schottky-Mott model. This is because the Schottky barrier height at the metal-semiconductor interface depends on the difference between the Fermi level and the band edge position of the semiconductor. At the metal-MoS2 interface, the Fermi level is partially pinned as a result of the interface dipole formation and the production of the gap states. Therefore, using different metals with different work functions cannot modify the Schottky barrier height effectively. Here we demonstrate that F and Cl doping can reduce the Schottky barrier height, while Br and I doping can increase it. According to the results of the differential charge density analysis, we can ascribe the tuning of Schottky barrier height to the influence of the dipole caused by the charge transfer among the interfaces. This study can explain the relevant experimental results very well and provide a potential route to achieving low-resistance contact in the future applications of 2D materials.
      通信作者: 周孝好, xhzhou@mail.sitp.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11334008,61290301)资助的课题.
      Corresponding author: Zhou Xiao-Hao, xhzhou@mail.sitp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11334008, 61290301).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Lee G H, Yu Y J, Lee C, Dean C, Shepard K L, Kim P, Hone J 2011 Appl. Phys. Lett. 99 243114

    [4]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [5]

    Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788

    [6]

    Liu W, Kang J, Sarkar D, Khatami Y, Jena D, Banerjee K 2013 Nano Lett. 13 1983

    [7]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [8]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372

    [9]

    Gong K, Zhang L, Ji W, Guo H 2014 Phys. Rev. B 90 125441

    [10]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [11]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [12]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [13]

    Liu H, Neal A T, Ye P D 2012 ACS Nano 6 8563

    [14]

    Popov I, Seifert G, Tomnek D 2012 Phys. Rev. Lett. 108 156802

    [15]

    Zhang L Y, Fang L, Peng X Y 2015 Acta Phys. Sin. 64 187101 (in Chinese) [张理勇, 方粮, 彭向阳 2015 物理学报 64 187101]

    [16]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2013 Nano Lett. 13 100

    [17]

    Liu W, Kang J, Cao W, Sarkar D, Khatami Y, Jena D, Banerjee K 2013 Proceedings of the IEEE International Electron Devices Meeting Washington, DC, USA, December 9-11, 2013 p499

    [18]

    Gan L Y, Zhao Y J, Huang D, Schwingenschlgl U 2013 Phys. Rev. B. 87 245307

    [19]

    Liu D, Guo Y, Fang L, Robertson J 2013 Appl. Phys. Lett. 103 183113

    [20]

    McDonnell S, Addou R, Buie C, Wallace R M, Hinkle C L 2014 ACS Nano. 8 2880

    [21]

    Yang L M, Majumdar K, Liu H, Du Y C, Wu H, Hatzistergos M, Hung P Y, Tieckelmann R, Tsai W, Hobbs C, Ye P D 2014 Nano Lett. 14 6275

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [23]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [24]

    Cheng Y C, Zhu Z Y, Schwingenschlgl U 2011 Phys. Rev. B 84 153402

    [25]

    Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, van den Brink J, Kelly P J 2009 Phys. Rev. B 79 195425

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [3]

    Lee G H, Yu Y J, Lee C, Dean C, Shepard K L, Kim P, Hone J 2011 Appl. Phys. Lett. 99 243114

    [4]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [5]

    Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788

    [6]

    Liu W, Kang J, Sarkar D, Khatami Y, Jena D, Banerjee K 2013 Nano Lett. 13 1983

    [7]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [8]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372

    [9]

    Gong K, Zhang L, Ji W, Guo H 2014 Phys. Rev. B 90 125441

    [10]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [11]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [12]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [13]

    Liu H, Neal A T, Ye P D 2012 ACS Nano 6 8563

    [14]

    Popov I, Seifert G, Tomnek D 2012 Phys. Rev. Lett. 108 156802

    [15]

    Zhang L Y, Fang L, Peng X Y 2015 Acta Phys. Sin. 64 187101 (in Chinese) [张理勇, 方粮, 彭向阳 2015 物理学报 64 187101]

    [16]

    Das S, Chen H Y, Penumatcha A V, Appenzeller J 2013 Nano Lett. 13 100

    [17]

    Liu W, Kang J, Cao W, Sarkar D, Khatami Y, Jena D, Banerjee K 2013 Proceedings of the IEEE International Electron Devices Meeting Washington, DC, USA, December 9-11, 2013 p499

    [18]

    Gan L Y, Zhao Y J, Huang D, Schwingenschlgl U 2013 Phys. Rev. B. 87 245307

    [19]

    Liu D, Guo Y, Fang L, Robertson J 2013 Appl. Phys. Lett. 103 183113

    [20]

    McDonnell S, Addou R, Buie C, Wallace R M, Hinkle C L 2014 ACS Nano. 8 2880

    [21]

    Yang L M, Majumdar K, Liu H, Du Y C, Wu H, Hatzistergos M, Hung P Y, Tieckelmann R, Tsai W, Hobbs C, Ye P D 2014 Nano Lett. 14 6275

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [23]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

    [24]

    Cheng Y C, Zhu Z Y, Schwingenschlgl U 2011 Phys. Rev. B 84 153402

    [25]

    Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, van den Brink J, Kelly P J 2009 Phys. Rev. B 79 195425

  • [1] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展. 物理学报, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] 郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波. 非对称氧掺杂对石墨烯/二硒化钼异质结肖特基势垒的调控. 物理学报, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [4] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响. 物理学报, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [5] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [6] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [7] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究. 物理学报, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [8] 吴孔平, 孙昌旭, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇. 铝-金刚石界面电子特性与界面肖特基势垒的杂化密度泛函理论HSE06的研究. 物理学报, 2017, 66(8): 088102. doi: 10.7498/aps.66.088102
    [9] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究. 物理学报, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [10] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [11] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究. 物理学报, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [12] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强. 物理学报, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [13] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [14] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [15] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [16] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究 . 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [17] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究. 物理学报, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [18] 张建东, 杨春, 陈元涛, 张变霞, 邵文英. 金原子掺杂的碳纳米管吸附CO气体的密度泛函理论研究. 物理学报, 2011, 60(10): 106102. doi: 10.7498/aps.60.106102
    [19] 房少华, 程秀兰, 黄 晔, 顾怀怀. DFT方法研究掺杂氮化硅对SONOS器件保持性能的作用. 物理学报, 2007, 56(11): 6634-6641. doi: 10.7498/aps.56.6634
    [20] 李宏伟, 王太宏. InAs量子点在肖特基势垒二极管输运特性中的影响. 物理学报, 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
计量
  • 文章访问数:  3775
  • PDF下载量:  608
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-27
  • 修回日期:  2017-03-01
  • 刊出日期:  2017-06-05

掺杂对金属-MoS2界面性质调制的第一性原理研究

  • 1. 中国科学院上海技术物理研究所, 红外物理国家重点实验室, 上海 200083;
  • 2. 中国科学院大学, 北京 100049
  • 通信作者: 周孝好, xhzhou@mail.sitp.ac.cn
    基金项目: 国家自然科学基金(批准号:11334008,61290301)资助的课题.

摘要: 采用基于密度泛函理论的第一性原理赝势平面波方法,计算了卤族元素掺杂对金属-MoS2界面性质的影响,包括缺陷形成能、电子能带结构、差分电荷密度以及电荷布居分布.计算结果表明:卤族元素原子倾向于占据单层MoS2表面的S原子位置;对于单层MoS2而言,卤族元素的掺杂将在禁带中引入杂质能级以及导致费米能级位置的移动.对于金属-MoS2界面体系,结合Schottky-Mott模型,证明了卤族元素的掺杂可以有效地调制金属-MoS2界面间的肖特基势垒高度.发现F和Cl原子的掺杂将会降低体系的肖特基势垒高度.相比之下,Br和I原子的掺杂却增大了体系的肖特基势垒高度.通过差分电荷密度和布居分布的分析,阐明了肖特基势垒高度的被调制是因为电荷转移形成的界面偶极矩的作用导致.研究结果解释了相关实验现象,并给二维材料的器件化应用提供了调节手段.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回