搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器

令维军 夏涛 董忠 刘勍 路飞平 王勇刚

引用本文:
Citation:

基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器

令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚

Passively Q-switched mode-locked Tm, Ho:LLF laser with a WS2 saturable absorber

Ling Wei-Jun, Xia Tao, Dong Zhong, Liu Qing, Lu Fei-Ping, Wang Yong-Gang
PDF
导出引用
  • 采用聚乙烯醇塑料膜为基质的WS2作为可饱和吸收体,在Tm,Ho:LiLuF4全固态激光器中实现了被动调Q锁模运转.以掺钛蓝宝石激光器作为抽运源,当最大吸收抽运功率为2.6 W时,激光输出功率为156 mW,典型的调Q脉冲包络重复频率为25 kHz,脉宽约为300 μs.当吸收功率大于1.39 W时,进入稳定调Q锁模运转,对应锁模脉冲序列的重复频率为131.6 MHz,调整深度接近100%.结果表明:WS2可以作为2 μm波段全固态激光器锁模的吸收体材料.
    Using few-layer tungsten disulfide (WS2) doped polyvinyl alcohol as a saturable absorber for the initiation of the pulse generation, we experimentally demonstrate stable passively Q-switched mode-locked operations of Tm, Ho:LiLuF4 laser at 1895 nm for the first time. The laser is designed with an X-type four-mirror cavity and pumped by a Ti:sapphire laser operated at 785 nm, and its continuous operation is initiated when the absorbed pump power is 143 mW. When the absorbed pump power reaches 2.645 W, we obtain a maximum output power of 985 mW and a crystal slope efficiency of 39.8% by linear fitting. When the saturable absorber WS2 is inserted in the cavity, the threshold of the absorbed pump power is increased to 234 mW. With the increase of the pump power, Q-switch pulse sequence is first observed. When the absorbed pump power reaches 1.39 W, the stable operation of the Q-switched mode locked pulse is realized. A maximum average output power of 156 mW is achieved at an absorbed pump power of 2.6 W, which corresponds to a 25 kHz Q-switched repetition rate and a 300 μs-long pulse envelope. In this case, the modulation depth in Q-switching envelopes is close to 100%. After the passively Q-switched mode-locked is obtained stably, the mode-locked pulses inside the Q-switched pulse envelope have a repetition rate of 131.6 MHz, corresponding to a mode locked pulse energy of 1.19 nJ and a cavity length of 1.14 m. According to the definition of the rise time and considering the symmetric shape of the mode locked pulse, we can assume that the duration of the pulse is approximately 1.25 times more than the rise time of the pulse. Then the width of the mode locked pulse is estimated to be about 878 ps. These experimental results show that WS2 is a promising broadband saturable absorption material for generating a 2 μm-wavelength mid-infrared solid-state laser pulse. By increasing the pump power and reducing the loss of WS2 material, it is possible to realize a continuous mode locking operation which has a narrower pulse duration. The mode-locked mid-infrared pulses are very stable and have a lot of potential applications such as ultrafast molecule spectroscopy, mid-IR pulse generation, laser radar, atmospheric environment monitoring, etc.
      Corresponding author: Ling Wei-Jun, wjlingts@sina.com;dz0212@foxmail.com ; Dong Zhong, wjlingts@sina.com;dz0212@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61465012, 61564008, 61461046, 61665010).
    [1]

    Sorokin E, Sorokina I T, Mandon J, Guelachvili G, Picque N 2007 Opt. Express 15 16540

    [2]

    Scholle K, Lamrini S, Koopmann P, Fuhrberg P 2010 Frontiers in Guided Wave Optics and Optoelectronics 21 471

    [3]

    Koopmann P, Lamrini S, Scholle K, Fuhrberg P, Petermann K, Huber G 2011 Opt. Lett. 36 948

    [4]

    Feng T L 2015 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [冯天利 2015 博士学位论文 (济南: 山东大学)]

    [5]

    Gluth A, Wang Y, Petrov V, Paajaste J, Suomalainen S, Härkönen A 2015 Opt. Express 23 1361

    [6]

    Yang K J, Bromberger H, Heinecke D, Kölbl C, Schäfer H, Dekorsy T 2012 Opt. Express 20 18630

    [7]

    Ma J, Xie G Q, Gao W L, Yuan P, Qian L J, Yu H H 2012 Opt. Express 37 1376

    [8]

    Yao B Q, Wang W, Tian Y, Li G, Wang Y Z 2011 Laser Phys. 21 2020

    [9]

    Denisov I A, Skoptsov N A, Gaponenko M S, Malyarevich A M, Yumashev K V, Lipovskii A A 2009 Opt. Express 34 3403

    [10]

    Wan H, Cai W, Wang F, Jiang S, Xu S, Liu J 2016 Opt. Quantum Electron. 48 1

    [11]

    Wang K, Wang J, Fan J, Lotya M, O'Neill A, Fox D 2013 Acs Nano. 7 9260

    [12]

    Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y 2014 Adv. Mater. 26 3538

    [13]

    Kong L C, Xie G Q, Yuan P, Qian L J, Wang S X, Yu H H 2015 Photon. Res. 3 A47

    [14]

    Zou X, Leng Y X, Li Y Y, Feng Y Y, Zhang P X, Hang Y, Wang J 2015 Chin. Opt. Express 13 081405

    [15]

    Wang X, Wang Y, Duan L, Li L, Sun H 2016 Opt. Commun. 367 234

    [16]

    Molinasánchez A, Wirtz L 2011 Phys. Rev. B 84 15

    [17]

    Chen B, Zhang X, Wu K, Wang H, Wang J, Chen J 2015 Opt. Express 23 26723

    [18]

    Li L, Jiang S, Wang Y, Wang X, Duan L, Mao D 2015 Opt. Express 23 28698

    [19]

    Khazaeinezhad R, Kassani S H, Jeong H, Park K J 2015 IEEE Photon. Technol. Lett. 27 1

    [20]

    Jung M, Lee J, Park J, Koo J, Jhon Y M, Ju H L 2015 Opt. Express 23 19996

    [21]

    Qiao L, Yang F G, Wu Y H, Ke Y G, Xia Z C 2014 Acta Phys. Sin. 63 214205 (in Chinese) [乔亮, 羊富贵, 武永华, 柯友刚, 夏忠朝 2014 物理学报 63 214205]

    [22]

    Peng H, Zhang K, Zhang L, Hang Y, Xu J, Tang Y 2010 Chin. Opt. Express 8 63

    [23]

    Zhang X, Yu L, Zhang S, Li L, Zhao J, Cui J 2013 Opt. Express 21 12629

    [24]

    Zhang Y H, Li N, Xu J C, Xi L 2004 China Journal of Chinese Materia Medica 29 101 (in Chinese) [张韵慧, 李宁, 许建辰, 肖莉2004 中国中药杂志29 101]

    [25]

    Zeng H, Liu G B, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608

    [26]

    Ling W J, Zheng J A, Jia Y L, Wei Z Y 2005 Acta Phys. Sin. 54 1619 (in Chinese) [令维军, 郑加安, 贾玉磊, 魏志义 2005 物理学报 54 1619]

    [27]

    Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D, Wang F Q 2013 Sci. Rep. 3 2718

    [28]

    Kong L C, Xie G Q, Yuan P, Qian L J, Wang S X, Yu H H, Zhang H J 2015 Photon. Res. 3 A47

    [29]

    Liu X M, Cui Y D, Han D D, Yao X K, Sun Z P 2015 Sci. Rep. 5 9101

    [30]

    Lagatsky A A, Han X, Serrano M D, Cascales C, Zaldo C, Calvez S 2010 Opt. Express 35 3027

  • [1]

    Sorokin E, Sorokina I T, Mandon J, Guelachvili G, Picque N 2007 Opt. Express 15 16540

    [2]

    Scholle K, Lamrini S, Koopmann P, Fuhrberg P 2010 Frontiers in Guided Wave Optics and Optoelectronics 21 471

    [3]

    Koopmann P, Lamrini S, Scholle K, Fuhrberg P, Petermann K, Huber G 2011 Opt. Lett. 36 948

    [4]

    Feng T L 2015 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese) [冯天利 2015 博士学位论文 (济南: 山东大学)]

    [5]

    Gluth A, Wang Y, Petrov V, Paajaste J, Suomalainen S, Härkönen A 2015 Opt. Express 23 1361

    [6]

    Yang K J, Bromberger H, Heinecke D, Kölbl C, Schäfer H, Dekorsy T 2012 Opt. Express 20 18630

    [7]

    Ma J, Xie G Q, Gao W L, Yuan P, Qian L J, Yu H H 2012 Opt. Express 37 1376

    [8]

    Yao B Q, Wang W, Tian Y, Li G, Wang Y Z 2011 Laser Phys. 21 2020

    [9]

    Denisov I A, Skoptsov N A, Gaponenko M S, Malyarevich A M, Yumashev K V, Lipovskii A A 2009 Opt. Express 34 3403

    [10]

    Wan H, Cai W, Wang F, Jiang S, Xu S, Liu J 2016 Opt. Quantum Electron. 48 1

    [11]

    Wang K, Wang J, Fan J, Lotya M, O'Neill A, Fox D 2013 Acs Nano. 7 9260

    [12]

    Wang S, Yu H, Zhang H, Wang A, Zhao M, Chen Y 2014 Adv. Mater. 26 3538

    [13]

    Kong L C, Xie G Q, Yuan P, Qian L J, Wang S X, Yu H H 2015 Photon. Res. 3 A47

    [14]

    Zou X, Leng Y X, Li Y Y, Feng Y Y, Zhang P X, Hang Y, Wang J 2015 Chin. Opt. Express 13 081405

    [15]

    Wang X, Wang Y, Duan L, Li L, Sun H 2016 Opt. Commun. 367 234

    [16]

    Molinasánchez A, Wirtz L 2011 Phys. Rev. B 84 15

    [17]

    Chen B, Zhang X, Wu K, Wang H, Wang J, Chen J 2015 Opt. Express 23 26723

    [18]

    Li L, Jiang S, Wang Y, Wang X, Duan L, Mao D 2015 Opt. Express 23 28698

    [19]

    Khazaeinezhad R, Kassani S H, Jeong H, Park K J 2015 IEEE Photon. Technol. Lett. 27 1

    [20]

    Jung M, Lee J, Park J, Koo J, Jhon Y M, Ju H L 2015 Opt. Express 23 19996

    [21]

    Qiao L, Yang F G, Wu Y H, Ke Y G, Xia Z C 2014 Acta Phys. Sin. 63 214205 (in Chinese) [乔亮, 羊富贵, 武永华, 柯友刚, 夏忠朝 2014 物理学报 63 214205]

    [22]

    Peng H, Zhang K, Zhang L, Hang Y, Xu J, Tang Y 2010 Chin. Opt. Express 8 63

    [23]

    Zhang X, Yu L, Zhang S, Li L, Zhao J, Cui J 2013 Opt. Express 21 12629

    [24]

    Zhang Y H, Li N, Xu J C, Xi L 2004 China Journal of Chinese Materia Medica 29 101 (in Chinese) [张韵慧, 李宁, 许建辰, 肖莉2004 中国中药杂志29 101]

    [25]

    Zeng H, Liu G B, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608

    [26]

    Ling W J, Zheng J A, Jia Y L, Wei Z Y 2005 Acta Phys. Sin. 54 1619 (in Chinese) [令维军, 郑加安, 贾玉磊, 魏志义 2005 物理学报 54 1619]

    [27]

    Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D, Wang F Q 2013 Sci. Rep. 3 2718

    [28]

    Kong L C, Xie G Q, Yuan P, Qian L J, Wang S X, Yu H H, Zhang H J 2015 Photon. Res. 3 A47

    [29]

    Liu X M, Cui Y D, Han D D, Yao X K, Sun Z P 2015 Sci. Rep. 5 9101

    [30]

    Lagatsky A A, Han X, Serrano M D, Cascales C, Zaldo C, Calvez S 2010 Opt. Express 35 3027

  • [1] 崔文文, 邢笑伟, 肖悦嘉, 刘文军. 高损伤阈值可饱和吸收体锁模脉冲光纤激光器的研究进展. 物理学报, 2022, 71(2): 024206. doi: 10.7498/aps.71.20212442
    [2] 戴川生, 董志鹏, 林加强, 姚培军, 许立新, 顾春. 基于纯水可饱和吸收体的1.9 μm波段被动调Q和锁模掺铥光纤激光器. 物理学报, 2022, 71(17): 174202. doi: 10.7498/aps.71.20212125
    [3] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴. MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光. 物理学报, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [4] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [6] 袁浩, 朱方祥, 王金涛, 杨蓉, 王楠, 于洋, 闫培光, 郭金川. 基于铋可饱和吸收体的超快激光产生. 物理学报, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [7] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器. 物理学报, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [8] 令维军, 夏涛, 董忠, 左银艳, 李可, 刘勍, 路飞平, 赵小龙, 王勇刚. 基于单壁碳纳米管调Q锁模低阈值Tm,Ho:LiLuF4激光器. 物理学报, 2018, 67(1): 014201. doi: 10.7498/aps.67.20171748
    [9] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [10] 乔亮, 羊富贵, 武永华, 柯友刚, 夏忠朝. Tm,Ho双掺调Q激光系统理论与实验研究. 物理学报, 2014, 63(21): 214205. doi: 10.7498/aps.63.214205
    [11] 新梅, 曹望和. 水热法制备ZnS:Cu,Tm超细X射线发光粉. 物理学报, 2010, 59(8): 5833-5838. doi: 10.7498/aps.59.5833
    [12] 林志锋, 张云山, 高春清, 高明伟. LD抽运Cr,Tm,Ho∶YAG微片激光器单纵模运转特性的研究. 物理学报, 2009, 58(3): 1689-1693. doi: 10.7498/aps.58.1689
    [13] 张新陆, 王月珠, 李立, 鞠有伦, 姜波. 端面抽运Tm,Ho:YLF激光器双稳特性的理论分析与实验研究. 物理学报, 2009, 58(2): 964-969. doi: 10.7498/aps.58.964
    [14] 柴 路, 颜 石, 薛迎红, 刘庆文, 葛文琦, 王清月, 苏良碧, 徐晓东, 赵广军, 徐 军. 镱、钠共掺的氟化钙晶体在1050nm的可饱和吸收作用. 物理学报, 2008, 57(5): 2966-2970. doi: 10.7498/aps.57.2966
    [15] 张新陆, 王月珠, 李 立, 鞠有伦. 激光二极管端面抽运Tm,Ho:YLF激光器双稳特性研究. 物理学报, 2008, 57(3): 1699-1703. doi: 10.7498/aps.57.1699
    [16] 张新陆, 王月珠, 李 立, 崔金辉, 鞠有伦. 端面抽运Tm,Ho∶YLF连续激光器的参数优化与实验研究. 物理学报, 2008, 57(6): 3519-3524. doi: 10.7498/aps.57.3519
    [17] 张新陆, 王月珠, 李 立, 鞠有伦. 端面抽运Tm, Ho:YLF激光器热转换系数及热透镜效应的研究. 物理学报, 2007, 56(4): 2196-2201. doi: 10.7498/aps.56.2196
    [18] 张新陆, 王月珠, 史洪峰. 激光二极管端面抽运室温Tm,Ho:YLF连续固体激光器. 物理学报, 2006, 55(4): 1787-1792. doi: 10.7498/aps.55.1787
    [19] 张新陆, 王月珠. 能量传递上转换对Tm,Ho:YLF调Q激光器上能级寿命的影响. 物理学报, 2006, 55(3): 1160-1164. doi: 10.7498/aps.55.1160
    [20] 张新陆, 王月珠, 鞠有伦. 能量传递上转换对Tm,Ho:YLF激光器阈值的影响. 物理学报, 2005, 54(1): 117-122. doi: 10.7498/aps.54.117
计量
  • 文章访问数:  5311
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-22
  • 修回日期:  2017-03-30
  • 刊出日期:  2017-06-05

/

返回文章
返回