搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁冲击相变的晶向效应

李俊 吴强 于继东 谭叶 姚松林 薛桃 金柯

引用本文:
Citation:

铁冲击相变的晶向效应

李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯

Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron

Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke
PDF
导出引用
  • 采用基于火炮加载的三样品精细波剖面对比测量,研究了晶向效应对铁弹-塑性转变及体心立方结构(bcc,相)至六角密排结构(hcp,相)相变特性的影响.观测到单晶铁异常的弹-塑性转变行为,这与基于位错密度描述的黏塑性本构模型计算结果相符,对应的Hugoniot弹性极限HEL均大于6 GPa,且具有晶向相关性,即(111)/(HEL) (110)/(HEL) (100)/(HEL);系统获取了相变起始压力PPT晶向相关性的实验数据,[100],[110]和[111]晶向的PPT实测值分别为13.890.57 GPa,14.530.53 GPa,16.050.67 GPa,其变化规律与非平衡分子动力学计算结果相符.上述结果揭示出冲击压缩下单晶铁存在塑性与相变微观机理的强耦合,为完善用于冲击实验描述的相场动力学模型提供了重要的实验支撑.
    The dynamic response of iron, especially the phase transformation from the ambient body-centered-cubic (bcc) up-phase to the hexagonal-closed packed (hcp) -phase, has been studied extensively in the last 60 years due to its importance in industry and its role as a main constituent of Earth. Recently, this topic has attracted a lot of attention in the aspects of the kinetic characteristics and mechanism of the shock-induced phase transition, including orientation-, temperature-, time- and strain rate-dependences. But only a few data have been published on the crystal orientation effect. The systematic experimental results to identify the predictions of the non-equilibrium molecular dynamics (NEMD) simulation are still lacking. For this reason, we study the shock responses of the [100], [110] and [111] orientated iron single crystals by using a three-independent-sample method in one shot. Unlike previously reported [001] single-crystal iron, a clear three-wave structure consisting of a PEL wave (elastic wave), a P1 wave (plastic wave) and a P2 wave (phase transition wave) is observed in the measured wave profiles for all single-crystal iron samples. The elastic-plastic transition process is in accordance with the numerical simulation of dislocation-based constitutive model for visco-plastic deformation. It is found that the values of Hugoniot elastic limit HEL ((111)/(HEL) (110)/(HEL) (100)/(HEL)) are greater than 6 GPa and dependent on the initial crystal orientation. Such a high yield strength is consistent with the nanosecond X-ray diffraction of [001] single-crystal iron where the uniaxial compression of the lattice has been observed at a shock pressure of about 5.4 GPa. Moreover, the onset pressures PPT for the phase transition are obtained to be 13.890.57 GPa, 14.530.53 GPa and 16.050.67 GPa along the [100], [110], and [111] directions, respectively. Based on these results, it is concluded that the crystal orientation effect of PPT is consistent with the reported NEMD calculations. However, the measured values are lower. In addition, the transition strain-ratio of singlecrystal iron is found to be higher than that of polycrystalline iron, reflecting the influence of the transformation kinetics (i.e., transformation kinetics coefficient) on the wave profile evolution. Our observations indicate that the strong coupling between plasticity and phase transition in single crystal iron might be a key point for understanding the origin of the phase transition and also for ending the controversy of metastable -phase. The fine multi-wave profiles also provide an important experimental reference for improving the phase field modeling of shock-induced phase transition.
      通信作者: 李俊, lijun102@caep.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:11602251,11302202)和科学挑战专项(批准号:TZ2016001)资助的课题.
      Corresponding author: Li Jun, lijun102@caep.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11602251, 11302202) and the Science Challenge Project, China (Grant No. TZ2016001).
    [1]

    Saxena S K, Shen G, Lazor P 1993 Science 260 1312

    [2]

    Minshall S 1955 J. Appl. Phys. 26 463

    [3]

    Bancraft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [4]

    Saxena S K, Dubrovinsky L S, Hggkvist P, Cerenius Y, Shen G, Mao H K 1995 Science 269 1703

    [5]

    Belonoshko A B, Dorogokupets P I, Johansson B, Saxena S K, Koči L 2008 Phys. Rev. B 78 104107

    [6]

    Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359

    [7]

    Crowhurst J C, Reed B W, Armstrong M R, Radousky H B, Carter J A, Swift D C, Zaug J M, Minich R W, Teslich N E, Kumer M 2014 J. Appl. Phys. 115 113506

    [8]

    Ma Y Z, Selvi E, Levitas V I, Hashemi J 2006 J. Phys. Condens. Matter 18 1075

    [9]

    Johnson P C, Stein B A, Davis R S 1962 J. Appl. Phys. 33 557

    [10]

    Zaretsky E B 2009 J. Appl. Phys. 106 023510

    [11]

    Merkel S, Liermann H P, Miyagi L 2013 Acta. Materialia 61 5144

    [12]

    Lu Z P, Zhu W J, Liu S J, Lu T C, Chen X R 2009 Acta Phys. Sin. 58 2083 (in Chinese) [卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣 2009 物理学报 58 2083]

    [13]

    Shao J L, He A M, Qin C S, Wang P 2009 Acta Phys. Sin. 58 5610 (in Chinese) [邵建立, 何安民, 秦承森, 王裴 2009 物理学报 58 5610]

    [14]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [15]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210

    [16]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [17]

    Wang K, Xiao S F, Deng H Q, Zhu W J, Hu W Y 2014 Int. J. Plast. 59 180

    [18]

    Lu Z P, Zhu W J, Lu T C, Wang W Q 2014 Modelling Simul. Sci. Eng. 22 025007

    [19]

    Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese) [马文, 祝文军, 张亚林, 经福谦 2011 物理学报 60 066404]

    [20]

    Shao J L, Qin C S, Wang P 2009 Acta Phys. Sin. 58 1936 (in Chinese) [邵建立, 秦承森, 王裴 2009 物理学报 58 1936]

    [21]

    Jensen B J, Gray III G T, Hixson R S 2009 J. Appl. Phys. 105 103502

    [22]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507

    [23]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J 2005 Phys. Rev. Lett. 95 075501

    [24]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davis H M, Effert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stlken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [25]

    Cao X X, Li J B, Li J, Li X H, Xu L, Wang Y, Zhu W J, Meng C M, Zhou X M 2014 J. Appl. Phys. 116 093516

    [26]

    Hawreliak J A, El-Dasher B, Lorenzana H 2011 Phys. Rev. B 83 144114

    [27]

    Krasnikov V S, Mayer A E, Yalovets P A 2011 Int. J. Plast. 27 1294

    [28]

    Mayer A E, Khishchenko K V, Levashov P R, Mayer P N 2013 J. Appl. Phys. 113 193508

    [29]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872

    [30]

    Yu J D, Wang W Q, Wu Q 2012 Phys. Rev. Lett. 109 115701

  • [1]

    Saxena S K, Shen G, Lazor P 1993 Science 260 1312

    [2]

    Minshall S 1955 J. Appl. Phys. 26 463

    [3]

    Bancraft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [4]

    Saxena S K, Dubrovinsky L S, Hggkvist P, Cerenius Y, Shen G, Mao H K 1995 Science 269 1703

    [5]

    Belonoshko A B, Dorogokupets P I, Johansson B, Saxena S K, Koči L 2008 Phys. Rev. B 78 104107

    [6]

    Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359

    [7]

    Crowhurst J C, Reed B W, Armstrong M R, Radousky H B, Carter J A, Swift D C, Zaug J M, Minich R W, Teslich N E, Kumer M 2014 J. Appl. Phys. 115 113506

    [8]

    Ma Y Z, Selvi E, Levitas V I, Hashemi J 2006 J. Phys. Condens. Matter 18 1075

    [9]

    Johnson P C, Stein B A, Davis R S 1962 J. Appl. Phys. 33 557

    [10]

    Zaretsky E B 2009 J. Appl. Phys. 106 023510

    [11]

    Merkel S, Liermann H P, Miyagi L 2013 Acta. Materialia 61 5144

    [12]

    Lu Z P, Zhu W J, Liu S J, Lu T C, Chen X R 2009 Acta Phys. Sin. 58 2083 (in Chinese) [卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣 2009 物理学报 58 2083]

    [13]

    Shao J L, He A M, Qin C S, Wang P 2009 Acta Phys. Sin. 58 5610 (in Chinese) [邵建立, 何安民, 秦承森, 王裴 2009 物理学报 58 5610]

    [14]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [15]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210

    [16]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [17]

    Wang K, Xiao S F, Deng H Q, Zhu W J, Hu W Y 2014 Int. J. Plast. 59 180

    [18]

    Lu Z P, Zhu W J, Lu T C, Wang W Q 2014 Modelling Simul. Sci. Eng. 22 025007

    [19]

    Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese) [马文, 祝文军, 张亚林, 经福谦 2011 物理学报 60 066404]

    [20]

    Shao J L, Qin C S, Wang P 2009 Acta Phys. Sin. 58 1936 (in Chinese) [邵建立, 秦承森, 王裴 2009 物理学报 58 1936]

    [21]

    Jensen B J, Gray III G T, Hixson R S 2009 J. Appl. Phys. 105 103502

    [22]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507

    [23]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J 2005 Phys. Rev. Lett. 95 075501

    [24]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davis H M, Effert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stlken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [25]

    Cao X X, Li J B, Li J, Li X H, Xu L, Wang Y, Zhu W J, Meng C M, Zhou X M 2014 J. Appl. Phys. 116 093516

    [26]

    Hawreliak J A, El-Dasher B, Lorenzana H 2011 Phys. Rev. B 83 144114

    [27]

    Krasnikov V S, Mayer A E, Yalovets P A 2011 Int. J. Plast. 27 1294

    [28]

    Mayer A E, Khishchenko K V, Levashov P R, Mayer P N 2013 J. Appl. Phys. 113 193508

    [29]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872

    [30]

    Yu J D, Wang W Q, Wu Q 2012 Phys. Rev. Lett. 109 115701

  • [1] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法. 物理学报, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [2] 华颖鑫, 刘福生, 耿华运, 郝龙, 于继东, 谭叶, 李俊. 多次冲击加载-卸载路径下铁α-ε相变动力学特性研究. 物理学报, 2021, 70(16): 166201. doi: 10.7498/aps.70.20210089
    [3] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理. 物理学报, 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [4] 李恬静, 操秀霞, 唐士惠, 何林, 孟川民. 蓝宝石冲击消光晶向效应的第一性原理. 物理学报, 2020, 69(4): 046201. doi: 10.7498/aps.69.20190955
    [5] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制. 物理学报, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [6] 蒋招绣, 王永刚, 聂恒昌, 刘雨生. 极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响. 物理学报, 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [7] 蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生. 多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变. 物理学报, 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [8] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [9] 卢志鹏, 祝文军, 卢铁城. 高压下Fe从bcc到hcp结构相变机理的第一性原理计算. 物理学报, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [10] 周婷婷, 黄风雷. HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟. 物理学报, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501
    [11] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [12] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [13] 邵建立, 何安民, 段素青, 王裴, 秦承森. 单轴应变驱动铁bcc—hcp相转变的微观模拟. 物理学报, 2010, 59(7): 4888-4894. doi: 10.7498/aps.59.4888
    [14] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算. 物理学报, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [15] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [16] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] 胡建刚, 王震遐, 勇震中, 李勤涛, 朱志远. 40Ar+诱导无定形碳到金刚石纳米晶相变的研究. 物理学报, 2006, 55(12): 6538-6542. doi: 10.7498/aps.55.6538
    [19] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [20] 刘 鹏, 杨同青, 张良莹, 姚 熹. Pb(Zr,Sn,Ti)O3反铁电陶瓷的低温相变扩散与极化弛豫. 物理学报, 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
计量
  • 文章访问数:  3712
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-02
  • 修回日期:  2017-04-12
  • 刊出日期:  2017-07-05

铁冲击相变的晶向效应

  • 1. 中国工程物理研究院流体物理研究所, 冲击波物理与爆轰物理实验室, 绵阳 621900
  • 通信作者: 李俊, lijun102@caep.cn
    基金项目: 国家自然科学基金青年科学基金(批准号:11602251,11302202)和科学挑战专项(批准号:TZ2016001)资助的课题.

摘要: 采用基于火炮加载的三样品精细波剖面对比测量,研究了晶向效应对铁弹-塑性转变及体心立方结构(bcc,相)至六角密排结构(hcp,相)相变特性的影响.观测到单晶铁异常的弹-塑性转变行为,这与基于位错密度描述的黏塑性本构模型计算结果相符,对应的Hugoniot弹性极限HEL均大于6 GPa,且具有晶向相关性,即(111)/(HEL) (110)/(HEL) (100)/(HEL);系统获取了相变起始压力PPT晶向相关性的实验数据,[100],[110]和[111]晶向的PPT实测值分别为13.890.57 GPa,14.530.53 GPa,16.050.67 GPa,其变化规律与非平衡分子动力学计算结果相符.上述结果揭示出冲击压缩下单晶铁存在塑性与相变微观机理的强耦合,为完善用于冲击实验描述的相场动力学模型提供了重要的实验支撑.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回