搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有余弦-高斯关联结构函数部分相干贝塞尔-高斯光束的传输性质及四暗空心光束的产生

朱洁 唐慧琴 李晓利 刘小钦

引用本文:
Citation:

具有余弦-高斯关联结构函数部分相干贝塞尔-高斯光束的传输性质及四暗空心光束的产生

朱洁, 唐慧琴, 李晓利, 刘小钦

Propagation properties of nonuniform cosine-Gaussian correlated Bessel-Gaussian beam through paraxial ABCD system and generation of dark-hollow beam array

Zhu Jie, Tang Hui-Qin, Li Xiao-Li, Liu Xiao-Qin
PDF
导出引用
  • 基于广义惠更斯-菲涅耳衍射积分公式,获得了余弦-高斯关联结构函数部分相干贝塞尔-高斯光束交叉谱密度函数通过近轴ABCD光学系统传输时的解析表达式.并因此探讨了该类光束经过自由空间传输时光强分布的演化特性.结果表明,余弦-高斯关联部分相干贝塞尔-高斯光束在合适的参数条件下能呈现自分裂等奇异传输特性.特别地,这种自分裂可实现暗空心光束的复制,即从一个暗空心光束获得四个相似的暗空心光束.并且发现这些传输特性和关联结构函数结构密切相关,因此调控关联结构函数分布以实现调制光的相干长度和空间分布性质从而可实现操控光束传输行为.由于暗空心光束在工程技术领域的重要应用价值,本文的研究结果提供了实现四暗空心光束的可能方案,从而在激光通信、微粒操控等方面具有重要的应用前景.
    Partially coherent beams with nonconventional correlation functions have been extensively studied due to their wide and important applications in free-space optical communication, particle trapping, image transmission and optical encryption. Here, we study the propagation of nonuniform cosine-Gaussian correlated Bessel-Gaussian beam (cGBCB) in detail. Analytical expressions for the cross-spectral density function of cGBCBs through paraxial ABCD system are derived based on the extended Huygens-Fresnel integral. By use of the derived formulae, the intensity distribution properties of a nonuniform cGBCB on propagation in free space are analytically investigated. Some numerical calculation results are presented and discussed graphically. It is found that when the root-mean-square correlation width δ and the parameter controlling the degree of coherence profiles β are appropriately chosen, the intensity distribution of the nonuniform cGBCB displays self-splitting properties during propagation. We point out that rather than a simple duplication, the self-splitting behaviour consists of a complex process in which the dark hollow pattern for cGBCB is gradually filled in the centre at first, then starts to split with increasing the propagation distance, and most impressively, an evolution process from a single dark hollow beam in the source plane to quadruple dark hollow profiles in certain propagation ranges can be realized. The influence of correlation function on the evolution properties of the intensity distribution is investigated, demonstrating that the values of parameters δ and β of the correlation function play a critical role in inducing the self-splitting effect for nonuniform cGBCB on propagation in free space. Therefore, it is clearly shown that modulating the correlation function of a partially coherent beam can alter the coherence length and the degree of nonuniformity, and thus provides an effective way of manipulating its propagation properties. We also find the evolution speed of the intensity distribution can be greatly affected by the topological charge n of the beam function and the parameter R controlling the hollow size of cGBCB in source plane, e. g. the intensity distribution evolves into quadruple dark hollow profiles more slowly with larger n or smaller R. As is well known, the dark-hollow intensity configurations are useful in many applications and have been extensively studied both theoretically and experimentally. Therefore, the results drawn in the paper develop an alternative way to realize dark-hollow beam array, and further pave the way for dark hollow beam applications in long-distance free-space optical communications.
      通信作者: 朱洁, jiezh_16@163.com
    • 基金项目: 贵州理工学院高层次人才引进科研启动费资助的课题.
      Corresponding author: Zhu Jie, jiezh_16@163.com
    • Funds: Project supported by the High Level Introduction of Talent Research Start-up Fund of Guizhou Institute of Technology, China.
    [1]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge:Cambridge University Press) pp33-39

    [2]

    Wolf E, Collett E 1978 Opt. Commun. 25 293

    [3]

    Gori F, Guattari G, Padovani C 1987 Opt. Commun. 64 311

    [4]

    Ponomarenko S A 2001 J. Opt. Soc. Am. A 18 150

    [5]

    Li J, Gao X M, Chen Y R 2012 Opt. Commun. 285 3403

    [6]

    Cang J, Xiu P, Liu X 2013 Opt. Laser Technol. 54 35

    [7]

    Gori F, Santarsiero M 2007 Opt. Lett. 32 3531

    [8]

    Chen Y H, Gu J X, Wang F, Cai Y J 2015 Phys. Rev. A 91 013823

    [9]

    Yu J Y, Chen Y H, Liu L, Liu X L, Cai Y J 2015 Opt. Express 23 13467

    [10]

    Chen Y H, Yu J Y, Yuan Y S, Wang F, Cai Y J 2016 Appl. Phys. B 122 31

    [11]

    Yu J Y, Chen Y H, Cai Y J 2016 Acta Phys. Sin. 65 214202 (in Chinese)[余佳益, 陈亚红, 蔡阳健2016物理学报65 214202]

    [12]

    Liang C H, Wang F, Liu X L, Cai Y J, Korotkova O 2014 Opt. Lett. 39 769

    [13]

    Mei Z R 2014 Opt. Express 22 13029

    [14]

    Mei Z R, Korotkova O 2013 Opt. Lett. 38 91

    [15]

    Wang F, Liu X, Yuan Y, Cai Y J 2013 Opt. Lett. 38 1814

    [16]

    Chen Y H, Cai Y J 2014 Opt. Lett. 39 2549

    [17]

    Chen Y H, Wang F, Zhao C L, Cai Y J 2014 Opt. Express 22 5826

    [18]

    Chen Y H, Liu L, Wang F, Zhao C L, Cai Y J 2014 Opt. Express 22 13975

    [19]

    Guo L N, Chen Y H, Liu L, Cai Y J 2015 Opt. Commun. 352 127

    [20]

    Xu H F, Zhang Z, Qu J, Huang W 2016 J. Mod. Opt. 63 1429

    [21]

    Qiu Y L, Chen Z X, He Y J 2017 Opt. Commun. 389 303

    [22]

    Mei Z R, Korotkova O 2013 Opt. Lett. 38 2578

    [23]

    Mei Z R, Schchepakina E, Korotkova O 2013 Opt. Express 21 17512

    [24]

    Pan L, Ding C, Wang H 2014 Opt. Express 22 11670

    [25]

    Xu H F, Zhang Z, Qu J, Huang W 2014 Opt. Express 22 22479

    [26]

    Ding C L, Liao L M, Wang H X, Zhang Y T, Pan L Z 2015 J. Opt. 17 035615

    [27]

    Zhu S J, Chen Y H, Wang J, Wang H Y, Li Z H, Cai Y J 2015 Opt. Express 23 33099

    [28]

    Song Z Z, Liu Z J, Zhou K Y, Sun Q G, Liu S T 2017 Chin. Phys. B 26 024201

    [29]

    Ma L Y, Ponomarenko S M 2015 Opt. Express 23 1848

    [30]

    Chen Y H, Ponomarenko S A, Cai Y J 2016 Appl. Phys. Lett. 109 061107

    [31]

    Mao Y M, Mei Z R 2016 Opt. Commun. 381 222

    [32]

    Liu X L, Yu J Y, Cai Y J, Ponomarenko S A 2016 Opt. Lett. 41 4182

    [33]

    Song Z Z, Liu Z J, Zhou K Y, Sun Q G, Liu S T 2016 J. Opt. 18 105601

    [34]

    Zhu K C, Zhou G Q, Li X Y, Zheng X J, Tang H Q 2008 Opt. Express 16 21315

    [35]

    Zhu K C, Li X Y, Zheng X J, Tang H Q 2010 Appl. Phys. B 98 567

    [36]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 251

    [37]

    Deng D, Li Y, Han Y H, Su X Y, Ye J F, Gao J M, Sun Q Q, Qu S L 2016 Opt. Express 24 19695

    [38]

    Liu H L, Lu Y F, Xia J, Chen D, He W, Pu X Y 2016 Opt. Express 24 28270

    [39]

    Zhou Q, Lu J F, Yin J P 2015 Acta Phys. Sin. 64 053701 (in Chinese)[周琦, 陆俊发, 印建平2015物理学报64 053701]

    [40]

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210(in Chinese)[朱开成, 唐慧琴, 郑小娟, 唐英2014物理学报63 104210]

    [41]

    Tang H Q, Zhu K C 2013 Opt. Lasers Technol. 54 68

    [42]

    Gradshtevn I S, Ryzhik I M 1980 Table of Integral, Series, and Products (New York:Academic Press) p307

  • [1]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge:Cambridge University Press) pp33-39

    [2]

    Wolf E, Collett E 1978 Opt. Commun. 25 293

    [3]

    Gori F, Guattari G, Padovani C 1987 Opt. Commun. 64 311

    [4]

    Ponomarenko S A 2001 J. Opt. Soc. Am. A 18 150

    [5]

    Li J, Gao X M, Chen Y R 2012 Opt. Commun. 285 3403

    [6]

    Cang J, Xiu P, Liu X 2013 Opt. Laser Technol. 54 35

    [7]

    Gori F, Santarsiero M 2007 Opt. Lett. 32 3531

    [8]

    Chen Y H, Gu J X, Wang F, Cai Y J 2015 Phys. Rev. A 91 013823

    [9]

    Yu J Y, Chen Y H, Liu L, Liu X L, Cai Y J 2015 Opt. Express 23 13467

    [10]

    Chen Y H, Yu J Y, Yuan Y S, Wang F, Cai Y J 2016 Appl. Phys. B 122 31

    [11]

    Yu J Y, Chen Y H, Cai Y J 2016 Acta Phys. Sin. 65 214202 (in Chinese)[余佳益, 陈亚红, 蔡阳健2016物理学报65 214202]

    [12]

    Liang C H, Wang F, Liu X L, Cai Y J, Korotkova O 2014 Opt. Lett. 39 769

    [13]

    Mei Z R 2014 Opt. Express 22 13029

    [14]

    Mei Z R, Korotkova O 2013 Opt. Lett. 38 91

    [15]

    Wang F, Liu X, Yuan Y, Cai Y J 2013 Opt. Lett. 38 1814

    [16]

    Chen Y H, Cai Y J 2014 Opt. Lett. 39 2549

    [17]

    Chen Y H, Wang F, Zhao C L, Cai Y J 2014 Opt. Express 22 5826

    [18]

    Chen Y H, Liu L, Wang F, Zhao C L, Cai Y J 2014 Opt. Express 22 13975

    [19]

    Guo L N, Chen Y H, Liu L, Cai Y J 2015 Opt. Commun. 352 127

    [20]

    Xu H F, Zhang Z, Qu J, Huang W 2016 J. Mod. Opt. 63 1429

    [21]

    Qiu Y L, Chen Z X, He Y J 2017 Opt. Commun. 389 303

    [22]

    Mei Z R, Korotkova O 2013 Opt. Lett. 38 2578

    [23]

    Mei Z R, Schchepakina E, Korotkova O 2013 Opt. Express 21 17512

    [24]

    Pan L, Ding C, Wang H 2014 Opt. Express 22 11670

    [25]

    Xu H F, Zhang Z, Qu J, Huang W 2014 Opt. Express 22 22479

    [26]

    Ding C L, Liao L M, Wang H X, Zhang Y T, Pan L Z 2015 J. Opt. 17 035615

    [27]

    Zhu S J, Chen Y H, Wang J, Wang H Y, Li Z H, Cai Y J 2015 Opt. Express 23 33099

    [28]

    Song Z Z, Liu Z J, Zhou K Y, Sun Q G, Liu S T 2017 Chin. Phys. B 26 024201

    [29]

    Ma L Y, Ponomarenko S M 2015 Opt. Express 23 1848

    [30]

    Chen Y H, Ponomarenko S A, Cai Y J 2016 Appl. Phys. Lett. 109 061107

    [31]

    Mao Y M, Mei Z R 2016 Opt. Commun. 381 222

    [32]

    Liu X L, Yu J Y, Cai Y J, Ponomarenko S A 2016 Opt. Lett. 41 4182

    [33]

    Song Z Z, Liu Z J, Zhou K Y, Sun Q G, Liu S T 2016 J. Opt. 18 105601

    [34]

    Zhu K C, Zhou G Q, Li X Y, Zheng X J, Tang H Q 2008 Opt. Express 16 21315

    [35]

    Zhu K C, Li X Y, Zheng X J, Tang H Q 2010 Appl. Phys. B 98 567

    [36]

    Zhu K C, Li S X, Tang Y, Yu Y, Tang H Q 2012 J. Opt. Soc. Am. A 29 251

    [37]

    Deng D, Li Y, Han Y H, Su X Y, Ye J F, Gao J M, Sun Q Q, Qu S L 2016 Opt. Express 24 19695

    [38]

    Liu H L, Lu Y F, Xia J, Chen D, He W, Pu X Y 2016 Opt. Express 24 28270

    [39]

    Zhou Q, Lu J F, Yin J P 2015 Acta Phys. Sin. 64 053701 (in Chinese)[周琦, 陆俊发, 印建平2015物理学报64 053701]

    [40]

    Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210(in Chinese)[朱开成, 唐慧琴, 郑小娟, 唐英2014物理学报63 104210]

    [41]

    Tang H Q, Zhu K C 2013 Opt. Lasers Technol. 54 68

    [42]

    Gradshtevn I S, Ryzhik I M 1980 Table of Integral, Series, and Products (New York:Academic Press) p307

  • [1] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究. 物理学报, 2022, 71(1): 014203. doi: 10.7498/aps.71.20211411
    [2] 陈康, 马志远, 张明明, 窦健泰, 胡友友. 部分相干幂指数相位涡旋光束的传输特性研究*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211411
    [3] 刘森森, 宋华冬, 林伟强, 陈旭东, 蒲继雄. 非均匀关联径向偏振部分相干光的产生. 物理学报, 2019, 68(7): 074201. doi: 10.7498/aps.68.20182289
    [4] 王飞, 余佳益, 刘显龙, 蔡阳健. 部分相干光束经过湍流大气传输研究进展. 物理学报, 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [5] 龚宁, 朱开成, 夏辉. 四瓣高斯光束的Gyrator变换性质和矩形空心光束的产生. 物理学报, 2016, 65(12): 124204. doi: 10.7498/aps.65.124204
    [6] 朱清智, 沈栋辉, 吴逢铁, 何西. 部分相干光对周期性局域空心光束的影响. 物理学报, 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [7] 郑尚彬, 唐碧华, 姜云海, 罗亚梅, 高曾辉. 部分相干刃型位错光束的谱Stokes奇点. 物理学报, 2016, 65(1): 014202. doi: 10.7498/aps.65.014202
    [8] 余佳益, 陈亚红, 蔡阳健. 非均匀拉盖尔-高斯关联光束及其传输特性. 物理学报, 2016, 65(21): 214202. doi: 10.7498/aps.65.214202
    [9] 杨婷, 季小玲, 李晓庆. 部分相干环状偏心光束通过海洋湍流的传输特性. 物理学报, 2015, 64(20): 204206. doi: 10.7498/aps.64.204206
    [10] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [11] 张磊, 陈子阳, 崔省伟, 刘绩林, 蒲继雄. 非均匀部分相干光束在自由空间中的传输. 物理学报, 2015, 64(3): 034205. doi: 10.7498/aps.64.034205
    [12] 朱开成, 唐慧琴, 郑小娟, 唐英. 广义双曲正弦-高斯光束的Gyrator变换性质和暗空心光束产生. 物理学报, 2014, 63(10): 104210. doi: 10.7498/aps.63.104210
    [13] 邓金平, 季小玲, 陆璐. 多色部分相干偏心光束在non-Kolmogorov湍流中的传输. 物理学报, 2013, 62(14): 144211. doi: 10.7498/aps.62.144211
    [14] 崔省伟, 陈子阳, 胡克磊, 蒲继雄. 部分相干Airy光束及其传输的研究. 物理学报, 2013, 62(9): 094205. doi: 10.7498/aps.62.094205
    [15] 丁攀峰, 蒲继雄. 部分相干涡旋光束传输中的光斑分析. 物理学报, 2012, 61(17): 174201. doi: 10.7498/aps.61.174201
    [16] 程科, 张洪润, 吕百达. 部分相干涡旋光束形成的相干涡旋特性研究. 物理学报, 2010, 59(1): 246-255. doi: 10.7498/aps.59.246
    [17] 仓吉, 张逸新. 斜程大气中聚焦J0相关部分相干光束的传输特性. 物理学报, 2009, 58(4): 2444-2450. doi: 10.7498/aps.58.2444
    [18] 付文羽, 马书懿. 部分相干平顶光束经光阑衍射的偏振特性. 物理学报, 2008, 57(2): 1271-1277. doi: 10.7498/aps.57.1271
    [19] 王 涛, 蒲继雄. 部分相干空心光束在湍流介质中的传输特性. 物理学报, 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
    [20] 陈园园, 王奇, 施解龙, 卫青. 部分相干光光束的振荡自陷特性. 物理学报, 2002, 51(3): 559-564. doi: 10.7498/aps.51.559
计量
  • 文章访问数:  2878
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-01
  • 修回日期:  2017-06-06
  • 刊出日期:  2017-08-05

具有余弦-高斯关联结构函数部分相干贝塞尔-高斯光束的传输性质及四暗空心光束的产生

  • 1. 贵州理工学院理学院, 贵阳 550003;
  • 2. 中南大学物理与电子学院, 长沙 410083
  • 通信作者: 朱洁, jiezh_16@163.com
    基金项目: 贵州理工学院高层次人才引进科研启动费资助的课题.

摘要: 基于广义惠更斯-菲涅耳衍射积分公式,获得了余弦-高斯关联结构函数部分相干贝塞尔-高斯光束交叉谱密度函数通过近轴ABCD光学系统传输时的解析表达式.并因此探讨了该类光束经过自由空间传输时光强分布的演化特性.结果表明,余弦-高斯关联部分相干贝塞尔-高斯光束在合适的参数条件下能呈现自分裂等奇异传输特性.特别地,这种自分裂可实现暗空心光束的复制,即从一个暗空心光束获得四个相似的暗空心光束.并且发现这些传输特性和关联结构函数结构密切相关,因此调控关联结构函数分布以实现调制光的相干长度和空间分布性质从而可实现操控光束传输行为.由于暗空心光束在工程技术领域的重要应用价值,本文的研究结果提供了实现四暗空心光束的可能方案,从而在激光通信、微粒操控等方面具有重要的应用前景.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回