搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小角X射线散射表征非晶合金纳米尺度结构非均匀

孙星 默广 赵林志 戴兰宏 吴忠华 蒋敏强

引用本文:
Citation:

小角X射线散射表征非晶合金纳米尺度结构非均匀

孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强

Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering

Sun Xing, Mo Guang, Zhao Lin-Zhi, Dai Lan-Hong, Wu Zhong-Hua, Jiang Min-Qiang
PDF
导出引用
  • 表征纳米尺度结构非均匀对于理解非晶合金的变形、弛豫等动力学行为至关重要.受时空尺度限制,非晶合金纳米尺度结构非均匀的实验表征具有很大的挑战性.本文针对一种典型的锆基非晶合金,开展了同步辐射小角X射线散射原位拉伸实验.通过对散射曲线的定量分析,揭示了非晶合金在纳米尺度的非均匀结构图像.首先,Porod散射曲线呈现正偏离行为,表明非晶合金属于非理想两相散射体系,两相界面弥散且任一相内都存在电子密度涨落.基于散射曲线的Guinier定律分析,进一步揭示非晶合金中散射体形状远偏离球形,其特征尺度主要分布在0.8-1.6 nm之间,且在弹性变形阶段几乎不变.最后,通过Debye相关函数分析,发现这些纳米尺度散射体仅在1 nm之内存在强关联,符合非晶合金短程有序、长程无序的结构特征.研究结果表明非晶合金中存在具有复杂空间分布的纳米尺度非均匀结构.
    Amorphous alloys are the glassy solids that are formed through the glass transition of high-temperature melts. They therefore inherit the long-ranger disorders of melts and many quenched-in defects such as free volume. This inevitably leads to structural heterogeneity on a nanoscale that is believed to be as fertile sites for initiating relaxation and flow. However, due to limitations of spatiotemporal measurements, experimental characterization of the nanoscale structural heterogeneity in amorphous alloys has faced a great challenges. In this paper, an in-situ tensile testing setup with synchrotron small angle X-ray scattering is designed for a Zr-based (Vitreloy 1) amorphous alloy. By the small angle X-ray scattering, the structural heterogeneity of the Vitreloy 1 amorphous alloy can be described by the fluctuation of electron density. The small angle scattering images are recorded with the charge coupled device (CCD) detector, and then are azimuthally integrated into the one-dimensional scattering intensity curves using the FIT2D software. We apply the Porod law, Guinier law and Debye law to the obtained scattering intensity curves, and attempt to obtain the information about structural heterogeneity in the Vitreloy 1 amorphous alloy at different stress levels.The results indicate that the scattering intensity curve of the Vitreloy 1 amorphous alloy exhibits the positive deviation of Porod law. This observation proves that the amorphous alloy belongs to the non-ideal two-phase system, corresponding to the complicated spatial distribution between soft/liquid-like and hard/solid-like phases. According to the Porod's law, it is revealed that the diffuse interface exists between the two phases, associated with the density fluctuations in either of phases. Furthermore, we demonstrate that different scatterers coexist in the amorphous alloy and their characteristic sizes measured by the radius of gyration are mainly distributed between 0.8 nm and 1.6 nm. It deserves to note that the range of radii of gyration of scatterers are close to the equivalent sizes (1.3–1.9 nm) of shear transformation zones (STZs) for plastic flow in amorphous alloys. In addition, the shape of scatterer is far from a sphere, reminiscent of STZ activation regions of flat discs. It is therefore concluded that the scatterers with larger gyration radius correspond to the soft regions for the potential STZs, while those with smaller gyration radius correspond to the hard regions with lower free volume concentration. Finally, based on the correlation function defined by Debye, we analyze the correlation of electron density fluctuation between two arbitrary scatterers. The result indicates that the nanoscale scatterers in the amorphous alloy are strongly correlated only within a range of about 1 nm, which is consistent with the short-range ordered and long-range disordered structural features of the amorphous alloy. The image of the nanoscale heterogeneous structures characterized by the small angle X-ray scattering is almost not changed in the elastic deformation stage of the amorphous alloy. The present findings increase our understanding of the nanoscale structural heterogeneity in amorphous alloys, which is an important step to describe glass flow and relaxation.
      通信作者: 蒋敏强, mqjiang@imech.ac.cn
    • 基金项目: 国家优秀青年科学基金(批准号:11522221)、国家自然科学基金(批准号:11372315,11472287)、中国科学院前沿科学重点研究项目(批准号:QYZDJSSW-JSC011)和中国科学院战略性科技先导专项(B类)(批准号:XDB22040303)资助的课题.
      Corresponding author: Jiang Min-Qiang, mqjiang@imech.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11522221, 11372315, 11472287), the Key Research Program of Frontiers Sciences, Chinese Academy of Sciences (Grant No. QYZDJSSW-JSC011), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB22040303).
    [1]

    Orowan E 1934 Zeitschrift fr Physik A: Hadrons and Nuclei 89 605

    [2]

    Polanyi M 1934 Zeitschrift fr Physik A: Hadrons and Nuclei 89 660

    [3]

    Taylor G I 1934 Proc. Roy. Soc. London. Series A: Containing Papers of a Mathematical and Physical Character 145 362

    [4]

    Fang T H, Li W L, Tao N R, Lu K 2011 Science 331 1587

    [5]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153

    [6]

    Wu X L, Yang M X, Yuan F P, Wu G, Wei Y J, Huang X X, Zhu Y T 2015 Proc. Natl. Acad. Sci. USA 112 14501

    [7]

    Jiang M Q, Dai L H 2009 J. Mech. Phys. Solids 57 1267

    [8]

    Jiang M Q, Jiang S Y, Dai L H 2009 Chin. Phys. Lett. 26 190

    [9]

    Wang Y J, Jiang M Q, Tian Z L, Dai L H 2016 Scripta Mater. 112 37

    [10]

    Greer A L 1995 Science 267 1947

    [11]

    Johnson W L 1999 MRS Bull. 24 42

    [12]

    Spaepen F 1977 Acta Metall. 25 407

    [13]

    Spaepen F 1982 Interim Technical Report Harvard Univ., Cambridge, MA. Div. of Applied Sciences

    [14]

    Argon A S 1979 Acta Metall. 27 47

    [15]

    Falk M L, Langer J S 1998 Phys. Rev. E 57 7192

    [16]

    Jiang M Q, Wilde G, Dai L H 2015 Mech. Mater. 81 72

    [17]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [18]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906

    [19]

    Eshelby John D 1957 Proc. Roy. Soc. London A: Math. Phys. Engineer. Sci. p376

    [20]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [21]

    Zink M, Samwer K, Johnson W L, Mayr S G 2006 Phys. Rev. B 73 172203

    [22]

    Pan D, Inoue A, Sakurai T, Chen M W 2008 Proc. Natl. Acad. Sci. USA 105 14769

    [23]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504

    [24]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [25]

    Srolovitz D, Maeda K, Vitek V, Egami T 1981 Philos. Mag. A 44 847

    [26]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501

    [27]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504

    [28]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260

    [29]

    Walter J L, Legrand D G, Luborsky F E 1977 Mater. Sci. Eng. 29 161

    [30]

    Osamura K, Shibue K, Suzuki R, Murakami Y, Takayama S 1981 J. Mater. Sci. 16 957

    [31]

    Lamparter P, Kroeger D M, Spooner S 1987 Scripta Metall. 21 715

    [32]

    Lamparter P, Steeb S 1988 J. Non-Cryst. Solids 106 137

    [33]

    Stoica M, Das J, Bednarcik J, Franz H, Mattern N, Wang W H, Eckert J 2008 J. Appl. Phys. 104 013522

    [34]

    Lan S, Wu Z D, Wang X L 2017 Chin. Phys. B 26 17104

    [35]

    Poulsen H F, Wert J A, Neuefeind J, Honkimäki V, Daymond M 2005 Nat. Mater. 4 33

    [36]

    Wang X D, Bednarcik J, Franz H, Lou H B, He Z H, Cao Q P, Jiang J Z 2009 Appl. Phys. Lett. 94 011911

    [37]

    Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R, Wang W H 2003 Phys. Rev. Lett. 91 265501

    [38]

    Liu X J, Hui X D, Chen G L, Sun M H 2008 Intermetallics 16 10

    [39]

    Jiang M Q, Naderi M, Wang Y J, Peterlechner M, Liu X F, Zeng F, Jiang F, Dai L H, Wilde G 2015 AIP. ADV 5 127133

    [40]

    Liu Y H, Wang G, Wang R J, Pan M X, Wang W H 2007 Science 315 1385

    [41]

    Guimer A, Fournet G 1955 (New York: John Wiley & Sons)

    [42]

    Porod G 1951 Colloid Polymer Sci. 124 83

    [43]

    Debye P, Bueche A M 1949 J. Appl. Phys. 20 518

    [44]

    Debye P, Anderson H R, Brumberger H 1957 J. Appl. Phys. 28 679

    [45]

    Li Z H, Wu Z H, Mo G, Xing X Q, Liu P 2014 Instrum. Sci. Technol. 42 128

    [46]

    Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R, Wang W H 2003 Phys. Rev. Lett. 91 265501

    [47]

    Egami T 2011 Prog. Mater. Sci. 56 637

    [48]

    Li Z H 2013 Chin. Phys. C 37 110

    [49]

    Pan J, Chan K C, Chen Q, Liu L 2012 Intermetallics 24 79

    [50]

    Zhang M, Dai L H, Liu Y, Liu L 2015 Scripta Mater. 107 111

    [51]

    Murali P, Zhang Y W, Gao H J 2012 Appl. Phys. Lett. 100 4067

    [52]

    Jiang F, Jiang M Q, Wang H F, Zhao Y L, He L, Sun J 2011 Acta Mater. 59 2057

    [53]

    Li Z H 2002 Ph. D. Dissertation (Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science) (in Chinese) [李志宏 2002 博士学位论文(太原: 中国科学院山西煤炭化学研究所)]

  • [1]

    Orowan E 1934 Zeitschrift fr Physik A: Hadrons and Nuclei 89 605

    [2]

    Polanyi M 1934 Zeitschrift fr Physik A: Hadrons and Nuclei 89 660

    [3]

    Taylor G I 1934 Proc. Roy. Soc. London. Series A: Containing Papers of a Mathematical and Physical Character 145 362

    [4]

    Fang T H, Li W L, Tao N R, Lu K 2011 Science 331 1587

    [5]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153

    [6]

    Wu X L, Yang M X, Yuan F P, Wu G, Wei Y J, Huang X X, Zhu Y T 2015 Proc. Natl. Acad. Sci. USA 112 14501

    [7]

    Jiang M Q, Dai L H 2009 J. Mech. Phys. Solids 57 1267

    [8]

    Jiang M Q, Jiang S Y, Dai L H 2009 Chin. Phys. Lett. 26 190

    [9]

    Wang Y J, Jiang M Q, Tian Z L, Dai L H 2016 Scripta Mater. 112 37

    [10]

    Greer A L 1995 Science 267 1947

    [11]

    Johnson W L 1999 MRS Bull. 24 42

    [12]

    Spaepen F 1977 Acta Metall. 25 407

    [13]

    Spaepen F 1982 Interim Technical Report Harvard Univ., Cambridge, MA. Div. of Applied Sciences

    [14]

    Argon A S 1979 Acta Metall. 27 47

    [15]

    Falk M L, Langer J S 1998 Phys. Rev. E 57 7192

    [16]

    Jiang M Q, Wilde G, Dai L H 2015 Mech. Mater. 81 72

    [17]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [18]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906

    [19]

    Eshelby John D 1957 Proc. Roy. Soc. London A: Math. Phys. Engineer. Sci. p376

    [20]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [21]

    Zink M, Samwer K, Johnson W L, Mayr S G 2006 Phys. Rev. B 73 172203

    [22]

    Pan D, Inoue A, Sakurai T, Chen M W 2008 Proc. Natl. Acad. Sci. USA 105 14769

    [23]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504

    [24]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [25]

    Srolovitz D, Maeda K, Vitek V, Egami T 1981 Philos. Mag. A 44 847

    [26]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H S, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501

    [27]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504

    [28]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260

    [29]

    Walter J L, Legrand D G, Luborsky F E 1977 Mater. Sci. Eng. 29 161

    [30]

    Osamura K, Shibue K, Suzuki R, Murakami Y, Takayama S 1981 J. Mater. Sci. 16 957

    [31]

    Lamparter P, Kroeger D M, Spooner S 1987 Scripta Metall. 21 715

    [32]

    Lamparter P, Steeb S 1988 J. Non-Cryst. Solids 106 137

    [33]

    Stoica M, Das J, Bednarcik J, Franz H, Mattern N, Wang W H, Eckert J 2008 J. Appl. Phys. 104 013522

    [34]

    Lan S, Wu Z D, Wang X L 2017 Chin. Phys. B 26 17104

    [35]

    Poulsen H F, Wert J A, Neuefeind J, Honkimäki V, Daymond M 2005 Nat. Mater. 4 33

    [36]

    Wang X D, Bednarcik J, Franz H, Lou H B, He Z H, Cao Q P, Jiang J Z 2009 Appl. Phys. Lett. 94 011911

    [37]

    Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R, Wang W H 2003 Phys. Rev. Lett. 91 265501

    [38]

    Liu X J, Hui X D, Chen G L, Sun M H 2008 Intermetallics 16 10

    [39]

    Jiang M Q, Naderi M, Wang Y J, Peterlechner M, Liu X F, Zeng F, Jiang F, Dai L H, Wilde G 2015 AIP. ADV 5 127133

    [40]

    Liu Y H, Wang G, Wang R J, Pan M X, Wang W H 2007 Science 315 1385

    [41]

    Guimer A, Fournet G 1955 (New York: John Wiley & Sons)

    [42]

    Porod G 1951 Colloid Polymer Sci. 124 83

    [43]

    Debye P, Bueche A M 1949 J. Appl. Phys. 20 518

    [44]

    Debye P, Anderson H R, Brumberger H 1957 J. Appl. Phys. 28 679

    [45]

    Li Z H, Wu Z H, Mo G, Xing X Q, Liu P 2014 Instrum. Sci. Technol. 42 128

    [46]

    Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R, Wang W H 2003 Phys. Rev. Lett. 91 265501

    [47]

    Egami T 2011 Prog. Mater. Sci. 56 637

    [48]

    Li Z H 2013 Chin. Phys. C 37 110

    [49]

    Pan J, Chan K C, Chen Q, Liu L 2012 Intermetallics 24 79

    [50]

    Zhang M, Dai L H, Liu Y, Liu L 2015 Scripta Mater. 107 111

    [51]

    Murali P, Zhang Y W, Gao H J 2012 Appl. Phys. Lett. 100 4067

    [52]

    Jiang F, Jiang M Q, Wang H F, Zhao Y L, He L, Sun J 2011 Acta Mater. 59 2057

    [53]

    Li Z H 2002 Ph. D. Dissertation (Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science) (in Chinese) [李志宏 2002 博士学位论文(太原: 中国科学院山西煤炭化学研究所)]

  • [1] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220446
    [2] 程怡婷, AndreyS. Makarov, GennadiiV. Afonin, VitalyA. Khonik, 乔吉超. 基于剪切模量和热分析数据研究Zr50–xCu34Ag8Al8Pdx (x = 0, 2)非晶合金缺陷浓度演化. 物理学报, 2021, 70(14): 146401. doi: 10.7498/aps.70.20210256
    [3] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [4] 柳延辉. 非晶合金的高通量制备与表征. 物理学报, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [5] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体. 物理学报, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [6] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [7] 平志海, 钟鸣, 龙志林. 基于逾渗理论的非晶合金屈服行为研究. 物理学报, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [8] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂. 物理学报, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [9] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [10] 王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [11] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [12] 杜晓明, 吴尔冬, 董宝中, 吴忠华, 苑学众. Ti-Mo合金氢化物微观缺陷的小角X射线散射研究. 物理学报, 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [13] 王海龙, 王秀喜, 王 宇, 梁海弋. 非晶Ti3Al合金的变形晶化机理的原子模拟. 物理学报, 2007, 56(3): 1489-1493. doi: 10.7498/aps.56.1489
    [14] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [15] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究. 物理学报, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [16] 夏庆中, 陈 波, 曾贵玉, 罗顺火, 董海山, 荣利霞, 董宝中. 三氨基三硝基苯材料微孔结构的小角x射线散射实验研究. 物理学报, 2005, 54(7): 3273-3277. doi: 10.7498/aps.54.3273
    [17] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [18] 赵辉, 杜志伟, 周铁涛, 刘培英, 董宝中, 陈昌麒. Al-Zn-Mg-Cu-Li合金时效过程微结构演化的小角x射线散射研究. 物理学报, 2004, 53(4): 1251-1254. doi: 10.7498/aps.53.1251
    [19] 徐 耀, 李志宏, 范文浩, 吴 东, 孙予罕, 王 俊, 董宝中. 小角x射线散射方法研究甲基改性氧化硅干凝胶的孔结构. 物理学报, 2003, 52(3): 635-640. doi: 10.7498/aps.52.635
    [20] 赵辉, 董宝中, 郭梅芳, 王良诗, 乔金梁. 小角x射线散射结晶聚合物结构的研究. 物理学报, 2002, 51(12): 2887-2891. doi: 10.7498/aps.51.2887
计量
  • 文章访问数:  3466
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-01
  • 修回日期:  2017-07-26
  • 刊出日期:  2017-09-05

小角X射线散射表征非晶合金纳米尺度结构非均匀

  • 1. 中国科学院力学研究所, 非线性力学国家重点实验室, 北京 100190;
  • 2. 中国科学院大学工程科学学院, 北京 100049;
  • 3. 中国科学院高能物理研究所, 同步辐射实验室, 北京 100039;
  • 4. 中国科学院物理研究所, 北京 100190
  • 通信作者: 蒋敏强, mqjiang@imech.ac.cn
    基金项目: 国家优秀青年科学基金(批准号:11522221)、国家自然科学基金(批准号:11372315,11472287)、中国科学院前沿科学重点研究项目(批准号:QYZDJSSW-JSC011)和中国科学院战略性科技先导专项(B类)(批准号:XDB22040303)资助的课题.

摘要: 表征纳米尺度结构非均匀对于理解非晶合金的变形、弛豫等动力学行为至关重要.受时空尺度限制,非晶合金纳米尺度结构非均匀的实验表征具有很大的挑战性.本文针对一种典型的锆基非晶合金,开展了同步辐射小角X射线散射原位拉伸实验.通过对散射曲线的定量分析,揭示了非晶合金在纳米尺度的非均匀结构图像.首先,Porod散射曲线呈现正偏离行为,表明非晶合金属于非理想两相散射体系,两相界面弥散且任一相内都存在电子密度涨落.基于散射曲线的Guinier定律分析,进一步揭示非晶合金中散射体形状远偏离球形,其特征尺度主要分布在0.8-1.6 nm之间,且在弹性变形阶段几乎不变.最后,通过Debye相关函数分析,发现这些纳米尺度散射体仅在1 nm之内存在强关联,符合非晶合金短程有序、长程无序的结构特征.研究结果表明非晶合金中存在具有复杂空间分布的纳米尺度非均匀结构.

English Abstract

参考文献 (53)

目录

    /

    返回文章
    返回