搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于逾渗理论的非晶合金屈服行为研究

平志海 钟鸣 龙志林

引用本文:
Citation:

基于逾渗理论的非晶合金屈服行为研究

平志海, 钟鸣, 龙志林

Yield behavior of amorphous alloy based on percolation theory

Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin
PDF
导出引用
  • 从非晶合金的微观结构出发,基于处理强无序和具有随机几何结构系统常用的理论方法––逾渗理论来描述非晶合金剪切屈服时的塑性流变.为了更好地理解非晶合金剪切带萌生时的临界问题,结合已有的“自由体积(free volume)模型”和“剪切转变区(shear transformation zone)模型”,建立了非晶合金剪切转变的逾渗模型.以Cu25Zr75二元非晶合金为例,计算了在剪切转变区内易发生塑性流动的原子团簇剪切失稳的逾渗阈值,并粗略估算了这些原子团簇的大小.研究发现,剪切失稳的逾渗阈值与临界约化自由体积浓度(xC~ 2.4%)有着相似的特性,不同之处在于其值与自由体积的分散度有着密切联系.研究结果作为非晶合金的韧脆转变问题提供了新思路.
    According to the microstructure of amorphous crystal, the percolation theory, which is a theoretical approach to dealing with the inhomogeneous physical systems or random fractals, is used to describe the plastic flows of amorphous alloys under shear yielding. In order to understand in depth the critical problems about the shear band initiations in amorphous alloys, a percolation model for shear transformations of these alloys is established by combining with the existing free volume model and shear transformation zone model. Taking the binary amorphous alloy Cu25Zr75 for example, the percolation threshold for the shearing instability of the atomic clusters prone to producing plastic flows in the shear transformation zone is calculated when a shear band comes into being. In addition, the size of the above-mentioned cluster is also roughly estimated. The calculated results show that the percolation threshold of the shearing instability is similar to the critical reduced free volume value (xC) of~2.4% for the onset of yielding in amorphous alloy although this threshold is closely related to the dispersity of free volume. The present study may provide a new idea and method of studying the ductile-brittle transition in amorphous alloy.
      通信作者: 龙志林, longzl@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51471139,51071134)资助的课题.
      Corresponding author: Long Zhi-Lin, longzl@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51471139, 51071134).
    [1]

    Wang W H 2013 Prog. Phys. 33 177(in Chinese)[汪卫华2013物理学进展 33 177]

    [2]

    Ding D, Zhang Y Q, Xia L 2015 Chin. Phys. Lett. 32 106101

    [3]

    Schroers J 2013 Phys. Today 66 32

    [4]

    Jiang M Q 2014 Mater. China 33 257(in Chinese)[蒋敏强2014中国材料进展 33 257]

    [5]

    Gao W, Feng S D, Qi L, Zhang S L, Liu R P 2015 Chin. Phys. Lett. 32 116101

    [6]

    Jiang M Q 2012 Acta Mech. Solida Sin. 33 227(in Chinese)[蒋敏强2012固体力学学报 33 227]

    [7]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81

    [8]

    Wang Q, Zhang S T, Yang Y, Dong Y D, Liu C T, Lu J 2015 Nat. Commun. 6 7876

    [9]

    Spaepen F 1977 Acta Metall. 25 407

    [10]

    Argon A S 1979 Acta Mater. 27 47

    [11]

    Wang J G, Zhao D Q, Pan M X, Wang W H, Song S X, Nieh T G 2010 Scripta Mater. 62 477

    [12]

    Liu A J, Nagel S R 1998 Nature 396 21

    [13]

    Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Greer J R 2015 Science 349 1306

    [14]

    Broadbent S R, Hammersley J M 1957 Math. Proc. Cambridge 53 629

    [15]

    Wu S H 1985 Polymer 26 1855

    [16]

    Li Q, Zheng W G, Qi Z N, Zhu X G, Cai Z L 1992 Sci. China:Chem. 22 236(in Chinese)[李强, 郑文革, 漆宗能, 朱晓光, 蔡忠龙1992中国科学:化学 22 236]

    [17]

    Pan D, Inoue A, Sakurai T, Chen M W 2008 Proc. Nat. Acad. Sci. USA 105 14769

    [18]

    Senkov O N, Miracle D B 2001 Mater. Res. Bull. 36 2183

    [19]

    Huang R, Suo Z, Prevost J H, Nix W D 2002 J. Mech. Phys. Solids 50 1011

    [20]

    Liu L F, Hu J, Cai Z P, Li H Q, Guo S B, Zhang G Y 2012 Acta Mech. Solida Sin. 33 69(in Chinese)[刘龙飞, 胡静, 蔡志鹏, 李会强, 郭世伯, 张光业2012固体力学学报 33 69]

    [21]

    Hu J 2011 M. S. Thesis (Xiangtan:Hunan University of Science and Technology) (in Chinese)[胡静2011硕士学位论文(湘潭:湖南科技大学)]

    [22]

    Arogn A S, Demkowice M J 2008 Metall. Mater. Trans. A 39 1762

    [23]

    Wu X Z, Zhu X G, Qi Z N 1991 Proceedings of the 8th International Conference on Deformation, Yield and Fracture of Polymers London 1991 p78

    [24]

    Irani R R, Callis C F 1963 Particle Siz:Measurement, Interpretation and Application (New York:Wiley) p40

    [25]

    Liu Z H, Zhu X G, Zhang X D, Qi Z N, Cai Z L, Wang F S 1998 Acta Polym. Sin. 1 32(in Chinese)[刘浙辉, 朱晓光, 张学东, 漆宗能, 蔡忠龙, 王佛松1998高分子学报 1 32]

    [26]

    Liu L F, Dai L H, Bai Y L, Ke F J 2008 Sci. China:Phys. Mech. Astron. 51 1367

    [27]

    Wang B P, Wang L, Xue Y F, Wang Y W, Zhang H F, HuaMeng F U 2016 Trans. Nonferrous Met. Soc. China 26 3154

    [28]

    Jeon C, Kang M, Kim C P, Kim H S, Lee S 2016 Mater. Sci. Eng. A 650 102

    [29]

    Yang B, Li X, Luo W, Li Y 2015 Acta Metall. Sin. 51 465

    [30]

    Wu Y C, Wang B, Hu Y C, Lu Z, Li Y Z, Shang B S, Wang W H, Bai H Y, Guan P F 2017 Scripta Mater. 134 75

  • [1]

    Wang W H 2013 Prog. Phys. 33 177(in Chinese)[汪卫华2013物理学进展 33 177]

    [2]

    Ding D, Zhang Y Q, Xia L 2015 Chin. Phys. Lett. 32 106101

    [3]

    Schroers J 2013 Phys. Today 66 32

    [4]

    Jiang M Q 2014 Mater. China 33 257(in Chinese)[蒋敏强2014中国材料进展 33 257]

    [5]

    Gao W, Feng S D, Qi L, Zhang S L, Liu R P 2015 Chin. Phys. Lett. 32 116101

    [6]

    Jiang M Q 2012 Acta Mech. Solida Sin. 33 227(in Chinese)[蒋敏强2012固体力学学报 33 227]

    [7]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81

    [8]

    Wang Q, Zhang S T, Yang Y, Dong Y D, Liu C T, Lu J 2015 Nat. Commun. 6 7876

    [9]

    Spaepen F 1977 Acta Metall. 25 407

    [10]

    Argon A S 1979 Acta Mater. 27 47

    [11]

    Wang J G, Zhao D Q, Pan M X, Wang W H, Song S X, Nieh T G 2010 Scripta Mater. 62 477

    [12]

    Liu A J, Nagel S R 1998 Nature 396 21

    [13]

    Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Greer J R 2015 Science 349 1306

    [14]

    Broadbent S R, Hammersley J M 1957 Math. Proc. Cambridge 53 629

    [15]

    Wu S H 1985 Polymer 26 1855

    [16]

    Li Q, Zheng W G, Qi Z N, Zhu X G, Cai Z L 1992 Sci. China:Chem. 22 236(in Chinese)[李强, 郑文革, 漆宗能, 朱晓光, 蔡忠龙1992中国科学:化学 22 236]

    [17]

    Pan D, Inoue A, Sakurai T, Chen M W 2008 Proc. Nat. Acad. Sci. USA 105 14769

    [18]

    Senkov O N, Miracle D B 2001 Mater. Res. Bull. 36 2183

    [19]

    Huang R, Suo Z, Prevost J H, Nix W D 2002 J. Mech. Phys. Solids 50 1011

    [20]

    Liu L F, Hu J, Cai Z P, Li H Q, Guo S B, Zhang G Y 2012 Acta Mech. Solida Sin. 33 69(in Chinese)[刘龙飞, 胡静, 蔡志鹏, 李会强, 郭世伯, 张光业2012固体力学学报 33 69]

    [21]

    Hu J 2011 M. S. Thesis (Xiangtan:Hunan University of Science and Technology) (in Chinese)[胡静2011硕士学位论文(湘潭:湖南科技大学)]

    [22]

    Arogn A S, Demkowice M J 2008 Metall. Mater. Trans. A 39 1762

    [23]

    Wu X Z, Zhu X G, Qi Z N 1991 Proceedings of the 8th International Conference on Deformation, Yield and Fracture of Polymers London 1991 p78

    [24]

    Irani R R, Callis C F 1963 Particle Siz:Measurement, Interpretation and Application (New York:Wiley) p40

    [25]

    Liu Z H, Zhu X G, Zhang X D, Qi Z N, Cai Z L, Wang F S 1998 Acta Polym. Sin. 1 32(in Chinese)[刘浙辉, 朱晓光, 张学东, 漆宗能, 蔡忠龙, 王佛松1998高分子学报 1 32]

    [26]

    Liu L F, Dai L H, Bai Y L, Ke F J 2008 Sci. China:Phys. Mech. Astron. 51 1367

    [27]

    Wang B P, Wang L, Xue Y F, Wang Y W, Zhang H F, HuaMeng F U 2016 Trans. Nonferrous Met. Soc. China 26 3154

    [28]

    Jeon C, Kang M, Kim C P, Kim H S, Lee S 2016 Mater. Sci. Eng. A 650 102

    [29]

    Yang B, Li X, Luo W, Li Y 2015 Acta Metall. Sin. 51 465

    [30]

    Wu Y C, Wang B, Hu Y C, Lu Z, Li Y Z, Shang B S, Wang W H, Bai H Y, Guan P F 2017 Scripta Mater. 134 75

  • [1] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [2] 程怡婷, AndreyS. Makarov, GennadiiV. Afonin, VitalyA. Khonik, 乔吉超. 基于剪切模量和热分析数据研究Zr50–xCu34Ag8Al8Pdx (x = 0, 2)非晶合金缺陷浓度演化. 物理学报, 2021, 70(14): 146401. doi: 10.7498/aps.70.20210256
    [3] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [4] 姚可夫, 施凌翔, 陈双琴, 邵洋, 陈娜, 贾蓟丽. 铁基软磁非晶/纳米晶合金研究进展及应用前景. 物理学报, 2018, 67(1): 016101. doi: 10.7498/aps.67.20171473
    [5] 任景莉, 于利萍, 张李盈. 非晶物质中的临界现象. 物理学报, 2017, 66(17): 176401. doi: 10.7498/aps.66.176401
    [6] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀. 物理学报, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [7] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [8] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体. 物理学报, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [9] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂. 物理学报, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [10] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [11] 柳延辉. 非晶合金的高通量制备与表征. 物理学报, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [12] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [13] 王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [14] 许福, 李科锋, 邓旭辉, 张平, 龙志林. 基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究. 物理学报, 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [15] 李乐, 李克非. 含随机裂纹网络孔隙材料渗透率的逾渗模型研究. 物理学报, 2015, 64(13): 136402. doi: 10.7498/aps.64.136402
    [16] 王海龙, 王秀喜, 王 宇, 梁海弋. 非晶Ti3Al合金的变形晶化机理的原子模拟. 物理学报, 2007, 56(3): 1489-1493. doi: 10.7498/aps.56.1489
    [17] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [18] 冯增朝, 赵阳升, 吕兆兴. 二维孔隙裂隙双重介质逾渗规律研究. 物理学报, 2007, 56(5): 2796-2801. doi: 10.7498/aps.56.2796
    [19] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究. 物理学报, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [20] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究. 物理学报, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
计量
  • 文章访问数:  3092
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-25
  • 修回日期:  2017-06-05
  • 刊出日期:  2017-09-05

基于逾渗理论的非晶合金屈服行为研究

  • 1. 湘潭大学土木工程与力学学院, 湘潭 411105
  • 通信作者: 龙志林, longzl@xtu.edu.cn
    基金项目: 国家自然科学基金(批准号:51471139,51071134)资助的课题.

摘要: 从非晶合金的微观结构出发,基于处理强无序和具有随机几何结构系统常用的理论方法––逾渗理论来描述非晶合金剪切屈服时的塑性流变.为了更好地理解非晶合金剪切带萌生时的临界问题,结合已有的“自由体积(free volume)模型”和“剪切转变区(shear transformation zone)模型”,建立了非晶合金剪切转变的逾渗模型.以Cu25Zr75二元非晶合金为例,计算了在剪切转变区内易发生塑性流动的原子团簇剪切失稳的逾渗阈值,并粗略估算了这些原子团簇的大小.研究发现,剪切失稳的逾渗阈值与临界约化自由体积浓度(xC~ 2.4%)有着相似的特性,不同之处在于其值与自由体积的分散度有着密切联系.研究结果作为非晶合金的韧脆转变问题提供了新思路.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回