搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属玻璃流变的扩展弹性模型

王军强 欧阳酥

引用本文:
Citation:

金属玻璃流变的扩展弹性模型

王军强, 欧阳酥

Extended elastic model for flow of metallic glasses

Wang Jun-Qiang, Ouyang Su
PDF
导出引用
  • 玻璃-液体转变现象,简称玻璃转变,被诺贝尔物理学奖获得者安德森教授评为最深奥与重要的凝聚态物理问题之一.金属玻璃作为典型的非晶态物质,具有与液体相似的无序原子结构,因此又称为冻结了的液态金属,是研究玻璃转变问题的理想模型材料.当加热至玻璃转变温度,或者加载到力学屈服点附近时,金属玻璃将会发生流动.由于热或应力导致的流动现象对金属玻璃的应用具有重要意义.本文简要回顾了金属玻璃流变现象,综述了流变扩展弹性模型的研究进展和未来发展趋势.
    Glass-liquid transition phenomenon, usually known as glass transition, has been valuated as one of the most important challenges in condensed matter physics. As typical amorphous solid, metallic glass is composed of disordered-packing atoms, which is akin to a liquid. Thus, metallic glass is also known as frozen liquid. Metallic glass is an ideal model material for studying glass transition phenomenon. When heated up to glass transition temperature or stressed to yielding point, metallic glass flows. The flow behavior at elevated temperature or under stress plays an important role in the applications of metallic glass. In this paper, we briefly review the research developments and perspectives for the flow behavior and extended elastic model for flow of metallic glasses. In elastic models for flow, i.e., free volume model, cooperative shear transformation model, it is assumed that the activation energy for flow (E) is a combination of shear modulus (G) and a characteristic volume (Vc), E=GVc. Most recently, it has been widely recognized that in amorphous materials, e. g. metallic glass, shear flow is always accompanied by dilatation effect. This suggests that besides shear modulus, bulk modulus (K) should also be taken into account for energy barrier. However, what are the contributions of K is still unknown. On the other hand, the physical meaning of characteristic volume Vc and the determination of its value are also important for quantitatively describing the flow behavior of metallic glass. Based on the statistical analyses of a large number of experimental data, i. e., elastic modulus, glass transition temperature, density and molar volume for 46 kinds of metallic glasses, the linear relationship between RTg/G and Vm is observed. This suggests that the molar volume (Vm) is the characteristic volume involved in the flow activation energy. To determine the contribution of K as a result of shear-dilatation effect, flow activation energy density is defined as E =E/Vm. According to the harmonic analysis of the energy density landscape, we propose that both shear and bulk moduli be involved in flow activation energy density, as E = (1-)G+K, with 9%. This result is also verified by the relationship between elastic modulus and glass transition temperature: (0.91G+ 0.09K)Vm/RTg is a constant, that is, independent of property of metallic glass. This result is also consistent with the evolution of sound velocity with glass transition temperature. In the end of this review, we address some prospects about the applications of the extended elastic model and its significance in designing new metallic glasses with advanced properties. This extended elastic model is also fundamentally helpful for understanding the nature of glass transition and kinetic properties of shear band of metallic glasses.
      通信作者: 王军强, jqwang@nimte.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11504391)和中国科学院百人计划资助的课题.
      Corresponding author: Wang Jun-Qiang, jqwang@nimte.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504391) and the 100 Talents Project of Chinese Academy of Sciences.
    [1]

    Weintraub H, Ashburner M, Goodfellow P N, Lodish H F, Arntzen C J, Anderson P W, Rice T M, Geballe T H, Means A R, Ranney H M, Cech T R, Colwell R R, Bourne H R, Richter B, Singer I M, Marrack P, Fearon D T, Penzias A, Bard A J, Brinkman W F, Marks P A, Vogelstein B, Kinzler K W, Bishop J M, Zare R N, Schatz G, Benkovic S J, Gray H B, Valentine J S, Crutzen P J, Choi D W, Nakanishi S, Kosslyn S M, Brauman J I, Rees D C, Brill W J, Schell J, Luhrmann R, Will C L, Wulf W, Vermeij G J, Arrow K J, Smelser N J, Anderson D L, Abelson P H 1995 Science 267 1609

    [2]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [3]

    Angell C A, Poole P H, Shao J 1994 Nuovo. Cimento. D 16 993

    [4]

    Mauro J C, Yue Y, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. 106 19780

    [5]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [6]

    Chen M W 2008 Annu. Rev. Mater. Res. 38 445

    [7]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385

    [8]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501

    [9]

    Schroers J, Johnson W L 2004 Phys. Rev. Lett. 93 255506

    [10]

    Yao K F, Ruan F, Yang Y Q, Chen N 2006 Appl. Phys. Lett. 88 122106

    [11]

    Chen M W, Inoue A, Zhang W, Sakurai T 2006 Phys. Rev. Lett. 96 245502

    [12]

    Spaepen F 2006 Nature Mater. 5 7

    [13]

    Song S X, Nieh T G 2011 Intermetallics 19 1968

    [14]

    Stolpe M, Kruzic J J, Busch R 2014 Acta Mater. 64 231

    [15]

    Xia X X, Wang W H, Greer A L 2009 J. Mater. Res. 24 2986

    [16]

    Xia X X, Wang W H 2012 Small 8 1197

    [17]

    Liu Y H, Liu C T, Wang W H, Inoue A, Sakurai T, Chen M W 2009 Phys. Rev. Lett. 103 065504

    [18]

    Yang B, Liu C T, Nieh T G 2006 Appl. Phys. Lett. 88 221911

    [19]

    Guan P F, Chen M W, Egami T 2010 Phys. Rev. Lett. 104 205701

    [20]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81

    [21]

    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nature Mater. 9 619

    [22]

    Falk M L, Langer J S 1998 Phys. Rev. E 57 7192

    [23]

    Argon A S 1979 Acta Metall. 27 47

    [24]

    Langer J S 2006 Scr. Mater. 54 375

    [25]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [26]

    Falk M L, Langer J S, Pechenik L 2004 Phys. Rev. E 70 011507

    [27]

    Zhu Z G, Wen P, Wang D P, Xue R J, Zhao D Q, Wang W H 2013 J. Appl. Phys. 114 083512

    [28]

    Xue R J, Wang D P, Zhu Z G, Ding D W, Zhang B, Wang W H 2013 J. Appl. Phys. 114 123514

    [29]

    Liu S T, Wang Z, Peng H L, Yu H B, Wang W H 2012 Scr. Mater. 67 9

    [30]

    Ke H B, Zeng J F, Liu C T, Yang Y 2014 J. Mater. Sci. Tech. 30 560

    [31]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329

    [32]

    Wang J G, Zhao D Q, Pan M X, Wang W H, Song S X, Nieh T G 2010 Scr. Mater. 62 477

    [33]

    Liu A J, Nagel S R 1998 Nature 396 21

    [34]

    Mayr S G 2006 Phys. Rev. Lett. 97 195501

    [35]

    Zink M, Samwer K, Johnson W L, Mayr S G 2006 Phys. Rev. B 73 172203

    [36]

    Dyre J C, Wang W H 2012 J. Chem. Phys. 136 224108

    [37]

    Hecksher T, Dyre J C 2015 J. Non-Cryst. Solids 407 14

    [38]

    Spaepen F 1977 Acta Metall. 25 407

    [39]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [40]

    Wang W H 2012 Nature Mater. 11 275

    [41]

    Ma D, Stoica A D, Wang X L, Lu Z P, Clausen B, Brown D W 2012 Phys. Rev. Lett. 108 085501

    [42]

    Wang W H 2005 J. Non-Cryst. Solids 351 1481

    [43]

    Li J F, Wang J Q, Liu X F, Zhao K, Zhang B, Bai H Y, Pan M X, Wang W H 2010 Sci. China: Phys. Mech. 53 409

    [44]

    Wang J Q, Wang W H, Bai H Y 2009 Appl. Phys. Lett. 94 041910

    [45]

    Zhang B, Zhao D Q, Pan M X, Wang W H, Greer AL 2005 Phys. Rev. Lett. 94 205502

    [46]

    Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys. Cond. Matter 23 142202

    [47]

    Torre D F H, Dubach A, Loffler J F 2010 J. Alloy. Compd. 495 341

    [48]

    Jiang W H, Atzmon M 2011 J. Alloy. Compd. 509 7395

    [49]

    Liu Z Q, Li R, Wang G, Wu S J, Lu X Y, Zhang T 2011 Acta Mater. 59 7416

    [50]

    Yi J, Wang W H, Lewandowski J J 2015 Acta Mater. 87 1

    [51]

    Jiang M Q, Jiang S Y, Dai L H 2009 Chin. Phys. Lett. 26 016103

    [52]

    Chen Y, Jiang M Q, Dai L H 2011 Sci. China: Phys. Mech. 54 1488

    [53]

    Jiang M Q, Wilde G, Dai LH 2015 Mech. Mater. 81 72

    [54]

    Jiang M Q, Wilde G, Chen J H, Qu C B, Fu S Y, Jiang F, Dai L H 2014 Acta Mater. 77 248

    [55]

    Schmidt V, Rosner H, Peterlechner M, Wilde G 2015 Phys. Rev. Lett. 115 035501

    [56]

    Wang J Q, Wang W H, Bai H Y 2011 J. Non-Cryst. Solids 357 223

    [57]

    Wang J Q, Wang W H, Liu Y H, Bai H Y 2011 Phys. Rev. B 83 012201

    [58]

    Wang W H 2006 J. Appl. Phys. 99 093506

    [59]

    Ke H B, Wen P, Zhao D Q, Wang W H 2010 Appl. Phys. Lett. 96 251902

    [60]

    Wang J Q, Wang W H, Yu H B, Bai H Y 2009 Appl. Phys. Lett. 94 121904

    [61]

    Wang J Q 2010 Ph. D. Dissertation (Beijing: Institute of Physics, CAS) (in Chinese) [王军强 2010 博士学位论文 (北京: 中国科学院物理研究所)]

    [62]

    Jiang M, Dai L 2007 Phys. Rev. B 76 054204

    [63]

    Zhang Z F, He G, Eckert J, Schultz L 2003 Phys. Rev. Lett. 91 045505

    [64]

    Dyre J C, Olsen N B 2004 Phys. Rev. E 69 042501

    [65]

    Wang Z C 2003 Thermodynamics and Statistics (Beijing: Higher Education Press) pp261-268 (in Chinese) [汪志诚 2003 热力学·统计物理 (北京: 高等教育出版社)第261-268页]

    [66]

    Dyre J C 2006 Rev. Mod. Phys. 78 953

    [67]

    Zhang B, Bai H, Wang R, Wu Y, Wang W 2007 Phys. Rev. B 76 012201

    [68]

    Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203

    [69]

    Liu Z Q, Wang W H, Jiang M Q, Zhang Z F 2014 Phil. Mag. Lett. 94 658

    [70]

    Liu Z Q, Wang R F, Qu R T, Zhang Z F 2014 J. Appl. Phys. 115 203513

    [71]

    Liu Z Q, Zhang Z F 2013 J. Appl. Phys. 114 243519

    [72]

    Lewandowski J J, Wang W H, Greer A L 2005 Phil. Mag. Lett. 85 77

    [73]

    Gu X J, Poon S J, Shiflet G J 2011 J. Mater. Res. 22 344

  • [1]

    Weintraub H, Ashburner M, Goodfellow P N, Lodish H F, Arntzen C J, Anderson P W, Rice T M, Geballe T H, Means A R, Ranney H M, Cech T R, Colwell R R, Bourne H R, Richter B, Singer I M, Marrack P, Fearon D T, Penzias A, Bard A J, Brinkman W F, Marks P A, Vogelstein B, Kinzler K W, Bishop J M, Zare R N, Schatz G, Benkovic S J, Gray H B, Valentine J S, Crutzen P J, Choi D W, Nakanishi S, Kosslyn S M, Brauman J I, Rees D C, Brill W J, Schell J, Luhrmann R, Will C L, Wulf W, Vermeij G J, Arrow K J, Smelser N J, Anderson D L, Abelson P H 1995 Science 267 1609

    [2]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [3]

    Angell C A, Poole P H, Shao J 1994 Nuovo. Cimento. D 16 993

    [4]

    Mauro J C, Yue Y, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. 106 19780

    [5]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [6]

    Chen M W 2008 Annu. Rev. Mater. Res. 38 445

    [7]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385

    [8]

    Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, Eckert J 2005 Phys. Rev. Lett. 94 205501

    [9]

    Schroers J, Johnson W L 2004 Phys. Rev. Lett. 93 255506

    [10]

    Yao K F, Ruan F, Yang Y Q, Chen N 2006 Appl. Phys. Lett. 88 122106

    [11]

    Chen M W, Inoue A, Zhang W, Sakurai T 2006 Phys. Rev. Lett. 96 245502

    [12]

    Spaepen F 2006 Nature Mater. 5 7

    [13]

    Song S X, Nieh T G 2011 Intermetallics 19 1968

    [14]

    Stolpe M, Kruzic J J, Busch R 2014 Acta Mater. 64 231

    [15]

    Xia X X, Wang W H, Greer A L 2009 J. Mater. Res. 24 2986

    [16]

    Xia X X, Wang W H 2012 Small 8 1197

    [17]

    Liu Y H, Liu C T, Wang W H, Inoue A, Sakurai T, Chen M W 2009 Phys. Rev. Lett. 103 065504

    [18]

    Yang B, Liu C T, Nieh T G 2006 Appl. Phys. Lett. 88 221911

    [19]

    Guan P F, Chen M W, Egami T 2010 Phys. Rev. Lett. 104 205701

    [20]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81

    [21]

    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nature Mater. 9 619

    [22]

    Falk M L, Langer J S 1998 Phys. Rev. E 57 7192

    [23]

    Argon A S 1979 Acta Metall. 27 47

    [24]

    Langer J S 2006 Scr. Mater. 54 375

    [25]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [26]

    Falk M L, Langer J S, Pechenik L 2004 Phys. Rev. E 70 011507

    [27]

    Zhu Z G, Wen P, Wang D P, Xue R J, Zhao D Q, Wang W H 2013 J. Appl. Phys. 114 083512

    [28]

    Xue R J, Wang D P, Zhu Z G, Ding D W, Zhang B, Wang W H 2013 J. Appl. Phys. 114 123514

    [29]

    Liu S T, Wang Z, Peng H L, Yu H B, Wang W H 2012 Scr. Mater. 67 9

    [30]

    Ke H B, Zeng J F, Liu C T, Yang Y 2014 J. Mater. Sci. Tech. 30 560

    [31]

    Huo L S, Zeng J F, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329

    [32]

    Wang J G, Zhao D Q, Pan M X, Wang W H, Song S X, Nieh T G 2010 Scr. Mater. 62 477

    [33]

    Liu A J, Nagel S R 1998 Nature 396 21

    [34]

    Mayr S G 2006 Phys. Rev. Lett. 97 195501

    [35]

    Zink M, Samwer K, Johnson W L, Mayr S G 2006 Phys. Rev. B 73 172203

    [36]

    Dyre J C, Wang W H 2012 J. Chem. Phys. 136 224108

    [37]

    Hecksher T, Dyre J C 2015 J. Non-Cryst. Solids 407 14

    [38]

    Spaepen F 1977 Acta Metall. 25 407

    [39]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [40]

    Wang W H 2012 Nature Mater. 11 275

    [41]

    Ma D, Stoica A D, Wang X L, Lu Z P, Clausen B, Brown D W 2012 Phys. Rev. Lett. 108 085501

    [42]

    Wang W H 2005 J. Non-Cryst. Solids 351 1481

    [43]

    Li J F, Wang J Q, Liu X F, Zhao K, Zhang B, Bai H Y, Pan M X, Wang W H 2010 Sci. China: Phys. Mech. 53 409

    [44]

    Wang J Q, Wang W H, Bai H Y 2009 Appl. Phys. Lett. 94 041910

    [45]

    Zhang B, Zhao D Q, Pan M X, Wang W H, Greer AL 2005 Phys. Rev. Lett. 94 205502

    [46]

    Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys. Cond. Matter 23 142202

    [47]

    Torre D F H, Dubach A, Loffler J F 2010 J. Alloy. Compd. 495 341

    [48]

    Jiang W H, Atzmon M 2011 J. Alloy. Compd. 509 7395

    [49]

    Liu Z Q, Li R, Wang G, Wu S J, Lu X Y, Zhang T 2011 Acta Mater. 59 7416

    [50]

    Yi J, Wang W H, Lewandowski J J 2015 Acta Mater. 87 1

    [51]

    Jiang M Q, Jiang S Y, Dai L H 2009 Chin. Phys. Lett. 26 016103

    [52]

    Chen Y, Jiang M Q, Dai L H 2011 Sci. China: Phys. Mech. 54 1488

    [53]

    Jiang M Q, Wilde G, Dai LH 2015 Mech. Mater. 81 72

    [54]

    Jiang M Q, Wilde G, Chen J H, Qu C B, Fu S Y, Jiang F, Dai L H 2014 Acta Mater. 77 248

    [55]

    Schmidt V, Rosner H, Peterlechner M, Wilde G 2015 Phys. Rev. Lett. 115 035501

    [56]

    Wang J Q, Wang W H, Bai H Y 2011 J. Non-Cryst. Solids 357 223

    [57]

    Wang J Q, Wang W H, Liu Y H, Bai H Y 2011 Phys. Rev. B 83 012201

    [58]

    Wang W H 2006 J. Appl. Phys. 99 093506

    [59]

    Ke H B, Wen P, Zhao D Q, Wang W H 2010 Appl. Phys. Lett. 96 251902

    [60]

    Wang J Q, Wang W H, Yu H B, Bai H Y 2009 Appl. Phys. Lett. 94 121904

    [61]

    Wang J Q 2010 Ph. D. Dissertation (Beijing: Institute of Physics, CAS) (in Chinese) [王军强 2010 博士学位论文 (北京: 中国科学院物理研究所)]

    [62]

    Jiang M, Dai L 2007 Phys. Rev. B 76 054204

    [63]

    Zhang Z F, He G, Eckert J, Schultz L 2003 Phys. Rev. Lett. 91 045505

    [64]

    Dyre J C, Olsen N B 2004 Phys. Rev. E 69 042501

    [65]

    Wang Z C 2003 Thermodynamics and Statistics (Beijing: Higher Education Press) pp261-268 (in Chinese) [汪志诚 2003 热力学·统计物理 (北京: 高等教育出版社)第261-268页]

    [66]

    Dyre J C 2006 Rev. Mod. Phys. 78 953

    [67]

    Zhang B, Bai H, Wang R, Wu Y, Wang W 2007 Phys. Rev. B 76 012201

    [68]

    Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203

    [69]

    Liu Z Q, Wang W H, Jiang M Q, Zhang Z F 2014 Phil. Mag. Lett. 94 658

    [70]

    Liu Z Q, Wang R F, Qu R T, Zhang Z F 2014 J. Appl. Phys. 115 203513

    [71]

    Liu Z Q, Zhang Z F 2013 J. Appl. Phys. 114 243519

    [72]

    Lewandowski J J, Wang W H, Greer A L 2005 Phil. Mag. Lett. 85 77

    [73]

    Gu X J, Poon S J, Shiflet G J 2011 J. Mater. Res. 22 344

  • [1] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 物理学报, 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304
    [2] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211304
    [3] 尹玉明, 赵伶玲. 离子浓度及表面结构对岩石孔隙内水流动特性的影响. 物理学报, 2020, 69(5): 054701. doi: 10.7498/aps.69.20191742
    [4] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [5] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索. 物理学报, 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [6] 柳延辉. 非晶合金的高通量制备与表征. 物理学报, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [7] 黄艳, 孙继忠, 桑超峰, 胡万鹏, 王德真. 边界局域模引起钨偏滤器靶板侵蚀和形貌变化的数值模拟研究. 物理学报, 2017, 66(3): 035201. doi: 10.7498/aps.66.035201
    [8] 于海滨, 杨群. 超稳定玻璃. 物理学报, 2017, 66(17): 176108. doi: 10.7498/aps.66.176108
    [9] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型. 物理学报, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [10] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [11] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [12] 郭古青, 吴诗阳, 蔡光博, 杨亮. 判定金属玻璃微观结构中的二十面体类团簇. 物理学报, 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [13] 李日, 王健, 周黎明, 潘红. 基于体积平均法模拟铸锭凝固过程的可靠性分析. 物理学报, 2014, 63(12): 128103. doi: 10.7498/aps.63.128103
    [14] 吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚. 金属玻璃的断裂机理与其断裂韧度的关系. 物理学报, 2014, 63(5): 058101. doi: 10.7498/aps.63.058101
    [15] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [16] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 物理学报, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [17] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究. 物理学报, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [18] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [19] 王永田, 赵作峰, 庞智勇, 刘 冉, 潘明祥, 赵德乾, 王万录, 韩宝善, 汪卫华. Pr基大块纳米晶合金及其特性研究. 物理学报, 2005, 54(6): 2838-2842. doi: 10.7498/aps.54.2838
    [20] 佟存柱, 郑萍, 白海洋, 陈兆甲, 雒建林, 张杰, 林德华, 汪卫华. 块体金属玻璃Zr_(48)Nb_8Cu_(12)Fe_8Be_(24)低温电阻的研究. 物理学报, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
计量
  • 文章访问数:  5294
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-17
  • 修回日期:  2017-05-02
  • 刊出日期:  2017-09-05

/

返回文章
返回