搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论多组态相互作用方法计算Mg+离子同位素位移

余庚华 颜辉 高当丽 赵朋义 刘鸿 朱晓玲 杨维

引用本文:
Citation:

相对论多组态相互作用方法计算Mg+离子同位素位移

余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维

Calculationof isotope shift of Mg+ ion by using the relativistic multi-configuration interaction method

Yu Geng-Hua, Yan Hui, Gao Dang-Li, Zhao Peng-Yi, Liu Hong, Zhu Xiao-Ling, Yang Wei
PDF
导出引用
  • 采用相对论多组态相互作用方法研究了Mg+离子3s2S1/23s2P1/2和3s2S1/23s2P3/2两条跃迁谱线的特殊质量位移系数和场位移因子,并计算了中子数8 N 20的Mg+离子的同位素位移.计算结果与其他理论的计算值符合得比较好,与最新的实验测量结果比较,相对误差在0.13%到0.28%范围,是目前最接近Mg+离子同位素位移实验测量的理论计算结果.该计算结果可为Mg+离子同位素位移实验和理论研究提供参考,能够用于Mg+离子的短寿命同位素的光谱测量实验以及利用Mg+离子开展幻中子数N=8和N=20附近的奇异原子核特性研究等.所用的计算方法和电子激发模式也可以推广到其他核外电子数为11的多电子体系,用于开展相应的原子光谱结构计算和同位素位移的理论研究.
    The special mass shift coefficients and field shift factors for the atomic transitions 3s2S1/2-3s2P1/2 and 3s2S1/2-3s2S3/2 of Mg+ ion are calculated by the relativistic multi-configuration interaction method, and the isotope shifts are also obtained for the Mg+ isotopes with the neutron numbers 8 N 20. Our calculations are carried out by using the GRASP2 K package together with the relativistic isotope shift computation code package RIS3. In our calculations the nuclear charge distribution is described by the two-parameter Fermi model and the field shifts are calculated by the first-order perturbation. In order to generate the active configurations, a restricted double excitation mode is used here, the electron in the 3s shell (3s1) is chosen to be excited, another electron is excited from the 2s or 2p shells (2s22p6), and the two electrons in the inner 1s shell (1s2) are not excited. The active configurations are expanded from the occupied orbitals to some active sets layer by layer, each correlation layer is labeled by the principal quantum number n and contains the corresponding orbitals s, p, detc. The maximum principal quantum number n is 6 and the largest orbital quantum number lmax is g. According to our calculations, the normal mass shift coefficients are -586.99 GHzamu and -588.50 GHzamu, the special mass shift coefficients are -371.90 GHzamu and -371.95 GHzamu, the field shift factors are -117.10 MHzfm-2 and -117.18 MHzfm-2 for the 3s2S1/2-3s2P1/2 and the 3s2S1/2 -3s2S3/2 transitions of Mg+ ions, respectively. Then the isotope shifts for different Mg+ isotopes are obtained using the available data of the nuclear mass and the nuclear charge radii. Our results are coincident with other theoretical calculations and also with experimental results. The relative errors of our calculations are in a range from 0.13% to 0.28% compared with the latest measurements. Our calculations are the most consistent with the experimental measurements for the moment. The results provided here in this paper could be referred to for the experimental and theoretical study of Mg+ isotope shift, and they could be applied to the spectral measurement experiments of the short-lived Mg+ isotopes and also used for the research of the characteristics of exotic nuclei with Mg+ isotopes near the magic neutron numbers N=8 and N=20. The calculation method and the excitation mode used here could also be extended to other multi-electron systems with eleven orbital electrons, and the corresponding theoretical studies of the atomic spectral structures and isotope shifts could then be carried out.
      通信作者: 颜辉, yanhui@scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11304093,11604253)、陕西省青年科技新星项目(批准号:2015KJXX-33)、四川省教育厅科研基金(批准号:14ZB0375)和广东省量子调控工程与材料重点实验室开放基金(批准号:00201607)资助的课题.
      Corresponding author: Yan Hui, yanhui@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundations of China (Grant Nos. 11304093, 11604253), the Plan Project of Youth Science and Technology New Star of Shaanxi Province, China (Grant No. 2015KJXX-33), the Fund of the Scientific Research Foundation of Sichuan Provincial Department of Education, China (Grant No. 14ZB0375) and the Open Fund of Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, China (Grant No. 00201607).
    [1]

    Volotka A V, Glazov D A, Shabaev V M, Tupitsyn I I, Plunien G 2015 Phys. Rev. Lett. 112 253004

    [2]

    Yan Z C, Nörtershäuser W, Drake G W F 2008 Phys. Rev. Lett. 100 243002

    [3]

    Cheal B, Cocolios T E, Fritzsche S 2012 Phys. Rev.. 86 042501

    [4]

    Borremans D, Balabanski D L, Blaum K, Geithner W, Gheysen S, Himpe P, Kowalska M, Lassen J, Lievens P, Mallion S, Neugart R, Neyens G, Vermeulen N, Yordanov D 2005 Phys. Rev.. 72 044309

    [5]

    Neugart R, Balabanski D L, Blaum K, Borremans D, Himpe P, Kowalska M, Lievens P, Mallion S, Neyens G, Vermeulen N, Yordanov D T 2008 Phys. Rev. Lett. 101 132502

    [6]

    Nörtershäuser W, Sánchez R, Ewald G, Dax A, Behr J, Bricault P, Bushaw B A, Dilling J, Dombsky M, Drake G W F, Götte S, Kluge H J, Khl T, Lassen J, Levy C D P, Pachucki K, Pearson M, Puchalski M, Wojtaszek A, Yan Z C, Zimmermann C 2011 Phys. Rev.. 83 012516

    [7]

    Takamine A, Wada M, Okada K, Sonoda T, Schury P, Nakamura T, Kanai Y, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2014 Phys. Rev. Lett. 112 162502

    [8]

    Tang L Y, Yan Z C, Shi T Y, James F B 2009 Phys. Rev.. 79 062712

    [9]

    Duff M J, Okun L B, Veneziano G 2002 J. High Energy Phys. 2002 023

    [10]

    Webb J K, King J A, Murphy M T, Flambaum V V, Carswell R F, Bainbridge M B 2011 Phys. Rev. Lett. 107 191101

    [11]

    Hawking S W 1974 Nature 248 30

    [12]

    Drobyshevski E M, Drobyshevski M E, Izmodenova T Y, Telnov D S 2003 Astron. Astrophys. Trans. 22 263

    [13]

    Federman S R, Lambert D L, Cardelli J A, Sheffer Y 1996 Nature 381 764

    [14]

    Xu P, Yang J W, Liu M, He X D, Zeng Y, Wang K P, Wang J, Papoular D J, Shlyapnikov G V, Zhan M S 2015 Nat. Commun. 6 7803

    [15]

    Papp S B, Pino J M, Wieman C E 2008 Phys. Rev. Lett. 101 040402

    [16]

    Burke J P, Bohn J L, Esry B D, Greene C H 1998 Phys. Rev. Lett. 80 2097

    [17]

    Hamilton M S, Gorges A R, Roberts J 2012 J. Phys.. 45 095302

    [18]

    Filippin L, Godefroid M, Ekman J, Jönsson P 2016 Phys. Rev.. 93 062512

    [19]

    Korol V A, Kozlov M G 2007 Phys. Rev.. 76 022103

    [20]

    Yu G H, Zhao P Y, Xu B M, Zhu X L, Yang W 2017 Mod. Phy. Lett.. 31 1750003

    [21]

    Fenner Y, Murphy M T, Gibson B K 2005 Mon. Not. R. Astron. Soc. 358 468

    [22]

    Ashenfelter T P, Mathews G J, Olive K A 2004 Phys. Rev. Lett. 92 041102

    [23]

    Patra S K, Praharaj C R 1991 Phys. Lett.. 273 13

    [24]

    Shubhchintak N, Chatterjee R, Shyam R, Tsushima K 2015 Nucl. Phys. 939 101

    [25]

    Safronova M S, Johnson W R 2001 Phys. Rev.. 64 052501

    [26]

    Safronova M S, Tupitsyn I I 2015 Comput. Phys. Commun. 195 199

    [27]

    Dzuba V A, Johnson W R, Safronova M S 2005 Phys. Rev.. 72 022503

    [28]

    Sahoo B K 2010 J. Phys.. 43 231001

    [29]

    Kozhedub Y S, Volotka A V, Artemyev A N, Glazov D A, Plunien G, Shabaev V M, Tupitsyn I I, Stöhlker T 2010 Phys. Rev.. 81 042513

    [30]

    Yan Z C, Drake G W F 2002 Phys. Rev.. 66 042504

    [31]

    Nazé C, Gaidamauskas E, Gaigalas G, Godefroid M, Jönsson P 2013 Comput. Phys. Commun. 184 2187

    [32]

    Jönsson P, He X, Fischer C F, Grant I 2007 Comput. Phys. Commun. 177 597

    [33]

    Jönsson P, Gaigalas G, Bierón J, Fischer C F, Grant I 2013 Comput. Phys. Commun. 184 2197

    [34]

    Lunney D, Pearson J M, Thibault C 2003 Rev. Mod. Phys. 75 1021

    [35]

    Wang M, Audi G, Wapstra A H, Kondev F G, Maccormick M, Xu X, Pfeiffer B 2012 Chin. Phys.. 36 1603

    [36]

    Berengut J C, Dzuba V A, Flambaum V V 2003 Phys. Rev.. 68 022502

    [37]

    Tupitsyn I I, Shabaev V M, López-Urrutia J R C, Draganic I, Orts R S, Ullrich J 2003 Phys. Rev.. 68 022511

    [38]

    Yordanov D T, Bissell M L, Blaum K, de Rydt M, Geppert C, Kowalska M, Krämer J, Kreim K, Krieger A, Lievens P, Neff T, Neugart R, Neyens G, Nörtershäuser W, Sánchez R, Vingerhoets P 2012 Phys. Rev. Lett. 108 042504

    [39]

    Drullinger R, Wineland D, Bergquist J 1980 Appl. Phys. 22 365

    [40]

    Batteiger V, Knnz S, Herrmann M, Saathoff G, Schssler H A, Bernhardt B, Wilken T, Holzwarth R, Hänsch T W, Udem T 2009 Phys. Rev.. 80 022503

    [41]

    Yu G H, Liu H, Zhao P Y, Xu B M, Gao D L, Zhu X L, Yang W 2017 Acta Phys. Sin. 66 113101(in Chinese) [余庚华, 刘鸿, 赵朋义, 徐炳明, 高当丽, 朱晓玲, 杨维 2017 物理学报 66 113101]

    [42]

    Shabaev V M 1985 Theor. Math. Phys. 63 588

    [43]

    Shabaev V M 1988 Sov. J. Nucl. Phys. 47 69

    [44]

    Zhang P P, Zhong Z X, Yan Z C, Shi T Y 2015 Chin. Phys.. 24 033101

    [45]

    Yan Z C, Drake G W F 2003 Phys. Rev. Lett. 91 113004

    [46]

    Tupitsyn I I, Kozlov M G, Safronova M S, Shabaev V M, Dzuba V A 2016 Phys. Rev. Lett. 117 253001

  • [1]

    Volotka A V, Glazov D A, Shabaev V M, Tupitsyn I I, Plunien G 2015 Phys. Rev. Lett. 112 253004

    [2]

    Yan Z C, Nörtershäuser W, Drake G W F 2008 Phys. Rev. Lett. 100 243002

    [3]

    Cheal B, Cocolios T E, Fritzsche S 2012 Phys. Rev.. 86 042501

    [4]

    Borremans D, Balabanski D L, Blaum K, Geithner W, Gheysen S, Himpe P, Kowalska M, Lassen J, Lievens P, Mallion S, Neugart R, Neyens G, Vermeulen N, Yordanov D 2005 Phys. Rev.. 72 044309

    [5]

    Neugart R, Balabanski D L, Blaum K, Borremans D, Himpe P, Kowalska M, Lievens P, Mallion S, Neyens G, Vermeulen N, Yordanov D T 2008 Phys. Rev. Lett. 101 132502

    [6]

    Nörtershäuser W, Sánchez R, Ewald G, Dax A, Behr J, Bricault P, Bushaw B A, Dilling J, Dombsky M, Drake G W F, Götte S, Kluge H J, Khl T, Lassen J, Levy C D P, Pachucki K, Pearson M, Puchalski M, Wojtaszek A, Yan Z C, Zimmermann C 2011 Phys. Rev.. 83 012516

    [7]

    Takamine A, Wada M, Okada K, Sonoda T, Schury P, Nakamura T, Kanai Y, Kubo T, Katayama I, Ohtani S, Wollnik H, Schuessler H A 2014 Phys. Rev. Lett. 112 162502

    [8]

    Tang L Y, Yan Z C, Shi T Y, James F B 2009 Phys. Rev.. 79 062712

    [9]

    Duff M J, Okun L B, Veneziano G 2002 J. High Energy Phys. 2002 023

    [10]

    Webb J K, King J A, Murphy M T, Flambaum V V, Carswell R F, Bainbridge M B 2011 Phys. Rev. Lett. 107 191101

    [11]

    Hawking S W 1974 Nature 248 30

    [12]

    Drobyshevski E M, Drobyshevski M E, Izmodenova T Y, Telnov D S 2003 Astron. Astrophys. Trans. 22 263

    [13]

    Federman S R, Lambert D L, Cardelli J A, Sheffer Y 1996 Nature 381 764

    [14]

    Xu P, Yang J W, Liu M, He X D, Zeng Y, Wang K P, Wang J, Papoular D J, Shlyapnikov G V, Zhan M S 2015 Nat. Commun. 6 7803

    [15]

    Papp S B, Pino J M, Wieman C E 2008 Phys. Rev. Lett. 101 040402

    [16]

    Burke J P, Bohn J L, Esry B D, Greene C H 1998 Phys. Rev. Lett. 80 2097

    [17]

    Hamilton M S, Gorges A R, Roberts J 2012 J. Phys.. 45 095302

    [18]

    Filippin L, Godefroid M, Ekman J, Jönsson P 2016 Phys. Rev.. 93 062512

    [19]

    Korol V A, Kozlov M G 2007 Phys. Rev.. 76 022103

    [20]

    Yu G H, Zhao P Y, Xu B M, Zhu X L, Yang W 2017 Mod. Phy. Lett.. 31 1750003

    [21]

    Fenner Y, Murphy M T, Gibson B K 2005 Mon. Not. R. Astron. Soc. 358 468

    [22]

    Ashenfelter T P, Mathews G J, Olive K A 2004 Phys. Rev. Lett. 92 041102

    [23]

    Patra S K, Praharaj C R 1991 Phys. Lett.. 273 13

    [24]

    Shubhchintak N, Chatterjee R, Shyam R, Tsushima K 2015 Nucl. Phys. 939 101

    [25]

    Safronova M S, Johnson W R 2001 Phys. Rev.. 64 052501

    [26]

    Safronova M S, Tupitsyn I I 2015 Comput. Phys. Commun. 195 199

    [27]

    Dzuba V A, Johnson W R, Safronova M S 2005 Phys. Rev.. 72 022503

    [28]

    Sahoo B K 2010 J. Phys.. 43 231001

    [29]

    Kozhedub Y S, Volotka A V, Artemyev A N, Glazov D A, Plunien G, Shabaev V M, Tupitsyn I I, Stöhlker T 2010 Phys. Rev.. 81 042513

    [30]

    Yan Z C, Drake G W F 2002 Phys. Rev.. 66 042504

    [31]

    Nazé C, Gaidamauskas E, Gaigalas G, Godefroid M, Jönsson P 2013 Comput. Phys. Commun. 184 2187

    [32]

    Jönsson P, He X, Fischer C F, Grant I 2007 Comput. Phys. Commun. 177 597

    [33]

    Jönsson P, Gaigalas G, Bierón J, Fischer C F, Grant I 2013 Comput. Phys. Commun. 184 2197

    [34]

    Lunney D, Pearson J M, Thibault C 2003 Rev. Mod. Phys. 75 1021

    [35]

    Wang M, Audi G, Wapstra A H, Kondev F G, Maccormick M, Xu X, Pfeiffer B 2012 Chin. Phys.. 36 1603

    [36]

    Berengut J C, Dzuba V A, Flambaum V V 2003 Phys. Rev.. 68 022502

    [37]

    Tupitsyn I I, Shabaev V M, López-Urrutia J R C, Draganic I, Orts R S, Ullrich J 2003 Phys. Rev.. 68 022511

    [38]

    Yordanov D T, Bissell M L, Blaum K, de Rydt M, Geppert C, Kowalska M, Krämer J, Kreim K, Krieger A, Lievens P, Neff T, Neugart R, Neyens G, Nörtershäuser W, Sánchez R, Vingerhoets P 2012 Phys. Rev. Lett. 108 042504

    [39]

    Drullinger R, Wineland D, Bergquist J 1980 Appl. Phys. 22 365

    [40]

    Batteiger V, Knnz S, Herrmann M, Saathoff G, Schssler H A, Bernhardt B, Wilken T, Holzwarth R, Hänsch T W, Udem T 2009 Phys. Rev.. 80 022503

    [41]

    Yu G H, Liu H, Zhao P Y, Xu B M, Gao D L, Zhu X L, Yang W 2017 Acta Phys. Sin. 66 113101(in Chinese) [余庚华, 刘鸿, 赵朋义, 徐炳明, 高当丽, 朱晓玲, 杨维 2017 物理学报 66 113101]

    [42]

    Shabaev V M 1985 Theor. Math. Phys. 63 588

    [43]

    Shabaev V M 1988 Sov. J. Nucl. Phys. 47 69

    [44]

    Zhang P P, Zhong Z X, Yan Z C, Shi T Y 2015 Chin. Phys.. 24 033101

    [45]

    Yan Z C, Drake G W F 2003 Phys. Rev. Lett. 91 113004

    [46]

    Tupitsyn I I, Kozlov M G, Safronova M S, Shabaev V M, Dzuba V A 2016 Phys. Rev. Lett. 117 253001

  • [1] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究. 物理学报, 2019, 68(4): 043101. doi: 10.7498/aps.68.20182136
    [2] 沈勇, 董家齐, 徐红兵. 托卡马克离子温度梯度湍流输运同位素定标修正中杂质的影响. 物理学报, 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [3] 周锐, 李传亮, 和小虎, 邱选兵, 孟慧艳, 李亚超, 赖云忠, 魏计林, 邓伦华. 基于ab initio计算的CF-离子低激发态光谱性质研究. 物理学报, 2017, 66(2): 023101. doi: 10.7498/aps.66.023101
    [4] 余庚华, 刘鸿, 赵朋义, 徐炳明, 高当丽, 朱晓玲, 杨维. 采用相对论多组态Dirac-Hartree-Fock方法对Mg原子同位素位移的理论研究. 物理学报, 2017, 66(11): 113101. doi: 10.7498/aps.66.113101
    [5] 熊庄, 汪振新, Naoum C. Bacalis. 基于改进变分法对原子激发态精确波函数的研究. 物理学报, 2014, 63(5): 053104. doi: 10.7498/aps.63.053104
    [6] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质. 物理学报, 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [7] 王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋. AsO+同位素离子X2+和A2电子态的多参考组态相互作用方法研究. 物理学报, 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [8] 陈兴鹏, 王楠. 相对论平均场理论对Rn同位素链原子核基态性质的研究. 物理学报, 2011, 60(11): 112101. doi: 10.7498/aps.60.112101
    [9] 李尊懋, 熊庄, 代丽丽. 几何活性原子态的计算. 物理学报, 2010, 59(11): 7824-7829. doi: 10.7498/aps.59.7824
    [10] 罗文浪, 阮 文, 张 莉, 谢安东, 朱正和. 氢同位素氚水T2O(X1A1)的解析势能函数. 物理学报, 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [11] 袁卫国, 戴长建, 靳 嵩, 赵洪英, 关 锋. Ba原子6pnd(J=1, 3)自电离光谱的实验研究. 物理学报, 2008, 57(7): 4076-4082. doi: 10.7498/aps.57.4076
    [12] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
    [13] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数. 物理学报, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [14] 万建杰, 颉录有, 董晨钟, 蒋 军, 颜 君. 类镍等电子系列离子M1,M2,E2禁戒跃迁特性的理论研究. 物理学报, 2007, 56(1): 152-159. doi: 10.7498/aps.56.152
    [15] 邢永忠, 刘建业, 郭文军, 郝焕锋. 中能重离子碰撞中库仑相互作用对动量耗散的同位旋效应. 物理学报, 2005, 54(4): 1538-1542. doi: 10.7498/aps.54.1538
    [16] 盛勇, 蒋刚, 朱正和. 类氢类氦类锂镁离子双电子复合的旁观电子角动量研究. 物理学报, 2002, 51(3): 501-505. doi: 10.7498/aps.51.501
    [17] 齐静波, 陈重阳, 王炎森. 类钠离子的电子碰撞电离截面. 物理学报, 2001, 50(8): 1475-1480. doi: 10.7498/aps.50.1475
    [18] 马洪良, 汤家镛. 142—146,148,150Nd+同位素位移的共线快离子束激光光谱学实验研究. 物理学报, 2001, 50(3): 453-456. doi: 10.7498/aps.50.453
    [19] 滕华国, 沈百飞, 张文琦, 徐至展. 组态相互作用效应对类钠铜离子自电离速率和分支比的影响. 物理学报, 1994, 43(2): 205-210. doi: 10.7498/aps.43.205
    [20] 基本粒子理论组. 瞬时相互作用近似下介子结构波函数的一些探讨(Ⅰ)——瞬时相互作用下介子波函数的一般性质. 物理学报, 1976, 25(4): 316-323. doi: 10.7498/aps.25.316
计量
  • 文章访问数:  3223
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-11
  • 修回日期:  2017-10-11
  • 刊出日期:  2018-01-05

相对论多组态相互作用方法计算Mg+离子同位素位移

  • 1. 成都大学信息科学与工程学院, 成都 610106;
  • 2. 华南师范大学, 广东省量子调控工程与材料重点实验室, 广州 510006;
  • 3. 西安建筑科技大学理学院, 西安 710055;
  • 4. 湖北师范大学物理与电子科学学院, 黄石 435002
  • 通信作者: 颜辉, yanhui@scnu.edu.cn
    基金项目: 国家自然科学基金(批准号:11304093,11604253)、陕西省青年科技新星项目(批准号:2015KJXX-33)、四川省教育厅科研基金(批准号:14ZB0375)和广东省量子调控工程与材料重点实验室开放基金(批准号:00201607)资助的课题.

摘要: 采用相对论多组态相互作用方法研究了Mg+离子3s2S1/23s2P1/2和3s2S1/23s2P3/2两条跃迁谱线的特殊质量位移系数和场位移因子,并计算了中子数8 N 20的Mg+离子的同位素位移.计算结果与其他理论的计算值符合得比较好,与最新的实验测量结果比较,相对误差在0.13%到0.28%范围,是目前最接近Mg+离子同位素位移实验测量的理论计算结果.该计算结果可为Mg+离子同位素位移实验和理论研究提供参考,能够用于Mg+离子的短寿命同位素的光谱测量实验以及利用Mg+离子开展幻中子数N=8和N=20附近的奇异原子核特性研究等.所用的计算方法和电子激发模式也可以推广到其他核外电子数为11的多电子体系,用于开展相应的原子光谱结构计算和同位素位移的理论研究.

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回