搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯碳纳米管复合结构渗透特性的分子动力学研究

张忠强 李冲 刘汉伦 葛道晗 程广贵 丁建宁

引用本文:
Citation:

石墨烯碳纳米管复合结构渗透特性的分子动力学研究

张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁

Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure

Zhang Zhong-Qiang, Li Chong, Liu Han-Lun, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning
PDF
导出引用
  • 采用经典分子动力学方法研究了压力驱动作用下水在石墨烯碳纳米管复合结构中的渗透特性.研究结果表明,水分子渗透通过石墨烯碳纳米管复合结构的渗透率明显高于石墨烯碳纳米管组合结构.水在石墨烯碳纳米管复合结构中的渗透率随着压强的升高而增大,随着电场强度的增大而减小.考虑了温度和复合结构中双碳管轴心距对水渗透性的影响规律.系统温度越高,水的渗透率越高;随着双碳管轴心距的增加,水的渗透率逐渐降低.通过计算分析水流沿渗透方向的能障分布,解释了各参数变化对水在石墨烯碳管复合结构中渗透特性的影响机理.研究结果将为基于石墨烯碳管复合结构的新型纳米水泵设计提供一定的理论依据.
    In this paper, the classical molecular dynamics method is used to investigate the permeability of pressure-driven water fluid in the hybrid structure of graphene-carbon nanotube (CNT). The results indicate that the permeability of water molecules for the hybrid structure of graphene-CNT is obviously higher than that for the assembled structure of graphene-CNT. The combination between the graphene sheet and CNT in the hybrid structure is found to be a key point to improve the permeability of water molecules. Subsequently, the potential of mean force (PMF) is calculated in order to explain the influences of the combined structure on the permeabilities for the water fluid passing through both the hybrid and assembled graphene-CNT structures. The result shows that the PMF for the water molecules penetrating through the assembled structure is larger than that for the hybrid structure appreciably. It implies that the structure of the combined chemical bonds in the hybrid structure can efficiently improve the permeability of water molecules. As for the water penetrating through the hybrid structured graphene-CNT, the permeability of water increases with water pressure rising, and decreases with the electric field intensity increasing. The water molecules cannot pass through the proposed hybrid structure below a pressure threshold of 100 MPa. The permeability of water in the hybrid structure decreases with the increasing charge quantity on CNT below a threshold of 0.8e. The PMF for water penetrating through the hybrid structure decreases with charge quantity decreasing. The results suggest that the water permeability can be controlled by regulating the water pressure and the electric field intensity. Furthermore, the influences of the temperature and the axis spacing of two CNTs in the hybrid structure on the water permeability are considered. The permeability of water in the hybrid structure increases with the increasing temperature above a threshold of 200 K. The PMF for water penetrating through the hybrid structure increases with the decreasing temperature. Interestingly, the water permeability decreases with the increasing axis spacing. As the axial spacing increases, the water permeability decreases gradually and even approaches to two times of the permeability in the case of the hybrid structure with a single CNT channel. The findings can provide a theoretical basis for designing nanopumps or osmotic membranes based on the graphene-CNT hybrid structures.
      通信作者: 张忠强, zhangzq@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11472117,11372298,11672063)和江苏省自然科学基金(批准号:BK20140556)资助的课题.
      Corresponding author: Zhang Zhong-Qiang, zhangzq@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472117, 11372298, 11672063) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140556).
    [1]

    Yang Y L, Li X Y, Jiang J L, Du H L, Zhao L N, Zhao Y L 2010 ACS Nano 4 5755

    [2]

    de Groot B L, Grubmuller H 2001 Science 294 2353

    [3]

    Lijima S 1991 Nature 345 56

    [4]

    Wildoer J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Nature 391 59

    [5]

    Hong Y C, Shin D H, Uhm H S 2007 Surf. Coat. Technol. 201 5025

    [6]

    Xia K L, Jian M Q, Zhang Y Y 2016 Acta Phys. Chim. Sin. 32 2427 (in Chinese) [夏凯伦, 蹇木强, 张莹莹 2016 物理化学学报 32 2427]

    [7]

    Pagona G, Tagmatarchis N 2006 Curr. Med. Chem. 13 1789

    [8]

    Sun L G, He X Q, Lu J 2016 NPJ Comput. Mater. 2 16004

    [9]

    Wang X, Sparkman J, Gou J H 2017 Compos. Commun. 3 1

    [10]

    Rinne K F, Gekle S, Bonthuis D J, Netz R R 2012 Nano Lett. 12 1780

    [11]

    Cao P, Luo C L, Chen G H, Han D R, Zhu X F, Dai Y F 2015 Acta Phys. Sin. 64 116101 (in Chinese) [曹平,罗成林,陈贵虎,韩典荣,朱兴凤,戴亚飞 2015 物理学报 64 116101]

    [12]

    Longhurst M J, Quirke N 2007 Nano Lett. 7 3324

    [13]

    Zhang Z Q, Dong X, Ye H F, Cheng G G, Ding J N, Ling Z Y 2014 J. Appl. Phys. 116 074307

    [14]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [15]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687

    [16]

    Zuo G C, Shen R, Ma S J, Guo W L 2009 ACS Nano 4 205

    [17]

    Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P 2007 Nat. Nanotechnol. 2 709

    [18]

    Cao G X, Qiao Y, Zhou Q L, Chen X 2008 Philos. Mag. Lett. 88 371

    [19]

    Qiu H, Shen R, Guo W L 2011 Nano Res. 4 284

    [20]

    Wang L Y, Wu H A, Wang F C 2017 Sci. Rep. 7 41717

    [21]

    Zhu Y, Li L, Zhang C G, Casillas G, Sun Z Z, Yan Z, Ruan G D, Peng Z W, Raji A R O, Kittrell C, Hauge R H, Tour J M 2012 Nat. Commun. 3 1225

    [22]

    Kim Y S, Kumar K, Fisher F T, Yang E H 2011 Nanotechnology 23 015301

    [23]

    Plimpton S J 1995 Comput. Phys. 117 1

    [24]

    Zhang Z Q, Ye H F, Liu Z, Ding J N, Cheng G G, Ling Z Y, Zheng Y G, Wang L, Wang J B 2012 J. Appl. Phys. 111 114304

    [25]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665

    [26]

    Wang Y H, He Z J, Cupta K M, Shi Q, Lui R F 2017 Carbon 116 120

    [27]

    Zhu F Q, Tajkhorshid E, Schulten K 2002 Biophys. J. 83 154

  • [1]

    Yang Y L, Li X Y, Jiang J L, Du H L, Zhao L N, Zhao Y L 2010 ACS Nano 4 5755

    [2]

    de Groot B L, Grubmuller H 2001 Science 294 2353

    [3]

    Lijima S 1991 Nature 345 56

    [4]

    Wildoer J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Nature 391 59

    [5]

    Hong Y C, Shin D H, Uhm H S 2007 Surf. Coat. Technol. 201 5025

    [6]

    Xia K L, Jian M Q, Zhang Y Y 2016 Acta Phys. Chim. Sin. 32 2427 (in Chinese) [夏凯伦, 蹇木强, 张莹莹 2016 物理化学学报 32 2427]

    [7]

    Pagona G, Tagmatarchis N 2006 Curr. Med. Chem. 13 1789

    [8]

    Sun L G, He X Q, Lu J 2016 NPJ Comput. Mater. 2 16004

    [9]

    Wang X, Sparkman J, Gou J H 2017 Compos. Commun. 3 1

    [10]

    Rinne K F, Gekle S, Bonthuis D J, Netz R R 2012 Nano Lett. 12 1780

    [11]

    Cao P, Luo C L, Chen G H, Han D R, Zhu X F, Dai Y F 2015 Acta Phys. Sin. 64 116101 (in Chinese) [曹平,罗成林,陈贵虎,韩典荣,朱兴凤,戴亚飞 2015 物理学报 64 116101]

    [12]

    Longhurst M J, Quirke N 2007 Nano Lett. 7 3324

    [13]

    Zhang Z Q, Dong X, Ye H F, Cheng G G, Ding J N, Ling Z Y 2014 J. Appl. Phys. 116 074307

    [14]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [15]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687

    [16]

    Zuo G C, Shen R, Ma S J, Guo W L 2009 ACS Nano 4 205

    [17]

    Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P 2007 Nat. Nanotechnol. 2 709

    [18]

    Cao G X, Qiao Y, Zhou Q L, Chen X 2008 Philos. Mag. Lett. 88 371

    [19]

    Qiu H, Shen R, Guo W L 2011 Nano Res. 4 284

    [20]

    Wang L Y, Wu H A, Wang F C 2017 Sci. Rep. 7 41717

    [21]

    Zhu Y, Li L, Zhang C G, Casillas G, Sun Z Z, Yan Z, Ruan G D, Peng Z W, Raji A R O, Kittrell C, Hauge R H, Tour J M 2012 Nat. Commun. 3 1225

    [22]

    Kim Y S, Kumar K, Fisher F T, Yang E H 2011 Nanotechnology 23 015301

    [23]

    Plimpton S J 1995 Comput. Phys. 117 1

    [24]

    Zhang Z Q, Ye H F, Liu Z, Ding J N, Cheng G G, Ling Z Y, Zheng Y G, Wang L, Wang J B 2012 J. Appl. Phys. 111 114304

    [25]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665

    [26]

    Wang Y H, He Z J, Cupta K M, Shi Q, Lui R F 2017 Carbon 116 120

    [27]

    Zhu F Q, Tajkhorshid E, Schulten K 2002 Biophys. J. 83 154

  • [1] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系. 物理学报, 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [2] 孙志伟, 何燕, 唐元政. 单壁碳纳米管受限空间内水的分布. 物理学报, 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [3] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [4] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] 尹灵康, 徐顺, Seongmin Jeong, Yongseok Jho, 王健君, 周昕. 广义等温等压系综-分子动力学模拟全原子水的气液共存形貌. 物理学报, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [6] 夏辉, 杨伟国. 浓悬浮液中纳米SiO2团聚体的渗透率. 物理学报, 2016, 65(14): 144203. doi: 10.7498/aps.65.144203
    [7] 李乐, 李克非. 含随机裂纹网络孔隙材料渗透率的逾渗模型研究. 物理学报, 2015, 64(13): 136402. doi: 10.7498/aps.64.136402
    [8] 韩典荣, 朱兴凤, 戴亚飞, 程承平, 罗成林. 碳纳米管阵列水渗透性质的研究. 物理学报, 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [9] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [10] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [11] 王文鹏, 刘福生, 张宁超. 冲击加载下液态水的结构相变. 物理学报, 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [12] 张云安, 陶俊勇, 陈循, 刘彬. 水对无定形SiO2拉伸特性影响的反应分子动力学模拟. 物理学报, 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [13] 刘华敏, 范永胜, 田时海, 周维, 陈旭. 分子动力学模拟压水反应堆中氢气对水的影响. 物理学报, 2012, 61(6): 062801. doi: 10.7498/aps.61.062801
    [14] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [15] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [16] 王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新. 多壁碳纳米管外壁高温蒸发的分子动力学模拟. 物理学报, 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [17] 刘志峰, 赖远庭, 赵 刚, 张有为, 刘正锋, 王晓宏. 随机多孔介质逾渗模型渗透率的临界标度性质. 物理学报, 2008, 57(4): 2011-2015. doi: 10.7498/aps.57.2011
    [18] 张春梅, 边心超, 陈 强, 付亚波, 张跃飞. 微量水对碳纳米管形貌的影响及其机理研究. 物理学报, 2008, 57(7): 4602-4606. doi: 10.7498/aps.57.4602
    [19] 欧阳雨, 方 炎. 水对800℃下CH4在Ar气中分解制备单壁碳纳米管的影响. 物理学报, 2005, 54(2): 578-581. doi: 10.7498/aps.54.578
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  3845
  • PDF下载量:  271
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-10
  • 修回日期:  2017-12-22
  • 刊出日期:  2018-03-05

石墨烯碳纳米管复合结构渗透特性的分子动力学研究

  • 1. 江苏大学, 微纳米科学技术研究中心, 镇江 212013;
  • 2. 常州大学, 江苏省光伏科学与工程协同创新中心, 常州 213164;
  • 3. 大连理工大学, 工业装备结构分析国家重点实验室, 大连 116024
  • 通信作者: 张忠强, zhangzq@ujs.edu.cn
    基金项目: 国家自然科学基金(批准号:11472117,11372298,11672063)和江苏省自然科学基金(批准号:BK20140556)资助的课题.

摘要: 采用经典分子动力学方法研究了压力驱动作用下水在石墨烯碳纳米管复合结构中的渗透特性.研究结果表明,水分子渗透通过石墨烯碳纳米管复合结构的渗透率明显高于石墨烯碳纳米管组合结构.水在石墨烯碳纳米管复合结构中的渗透率随着压强的升高而增大,随着电场强度的增大而减小.考虑了温度和复合结构中双碳管轴心距对水渗透性的影响规律.系统温度越高,水的渗透率越高;随着双碳管轴心距的增加,水的渗透率逐渐降低.通过计算分析水流沿渗透方向的能障分布,解释了各参数变化对水在石墨烯碳管复合结构中渗透特性的影响机理.研究结果将为基于石墨烯碳管复合结构的新型纳米水泵设计提供一定的理论依据.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回