搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

伸缩-剪切模式自偏置铌酸锂基复合材料的磁电性能和高频谐振响应

辛成舟 马健男 马静 南策文

引用本文:
Citation:

伸缩-剪切模式自偏置铌酸锂基复合材料的磁电性能和高频谐振响应

辛成舟, 马健男, 马静, 南策文

Magnetoelectric effect in stretch-shear mode self-biased LiNbO3 based composite with high-frequency resonant response

Xin Cheng-Zhou, Ma Jian-Nan, Ma Jing, Nan Ce-Wen
PDF
导出引用
  • 选用多种切型铌酸锂(LiNbO3)单晶,研究了铁基非晶合金(Metglas)/LiNbO3叠层复合材料基于伸缩-剪切模式的磁电耦合性能,揭示了铌酸锂单晶压电系数与复合材料剪切磁电耦合系数的对应关系,在使用铌酸锂xzt/30切型时得到了最优化剪切磁电系数.通过SrFe12O19薄磁带提供偏置磁场,Metglas/LiNbO3磁电复合材料可在没有外加直流磁场时实现剪切磁电响应,并在0.991 MHz和3.51 MHz频率时分别测出了谐振磁电系数,有望将铌酸锂基剪切磁电复合材料用于高频磁场探测.
    Magnetoelectric (ME) composites have received attention abidingly due to the promising potential applications in magnetic field sensor and energy harvester. In recent years, shear mode ME composite was frequently discussed with promising applications in high-frequency magnetic field with large signal-to-noise ratio. Single-crystal LiNbO3, as a lead-free piezoelectric phase with high mechanical quality factor and small dielectric constant, is suitable for achieving a large shear ME effect with large shear piezoelectric coefficient d15 or d24, and different piezoelectric coefficients can be obtained by crystal-cut transformation. The transformation rule of shear ME coefficient with transformation of LiNbO3 crystal orientation and the MHz high-frequency magnetic detection is still lacking. Furthermore, self-biased ME composite can be obtained with SrFe12O19 ribbon, which is useful for the integration and miniaturization of ME sensor. In the present work, we use a series of X-cut LiNbO3 to obtain different d15 or d16 in a stretch-shear ME composite. Piezoelectric coefficient d15 and ME coefficient E15 of Metglas/LiNbO3 composite are obtained in experiment, respectively. The results show that LiNbO3 xzt/30 has the largest d15 and E15, and the transformation rule of E15 is consistent with the coordinate transformation of d15. The structure of stretch-shear ME composite is optimized to improve the ME coefficient. Then the stretch-shear mode self-biased SrFe12O19/Metglas/LiNbO3 composite is fabricated, and shear ME response is observed under zero external direct current magnetic bias. Moreover, E15 at electromechanical resonance frequency is gained at shear-mode high frequency (0.991 MHz and 3.51 MHz). The largest ME coefficient E15 is acquired in the stretch-shear 5-foil Metglas/LiNbO3 (xzt/30) composite of 134.16 mV/(cmOe) at 1 kHz and 9.17 V/(cm Oe) at 3.51 MHz. This work is beneficial to the confirming of the corresponding rules of shear ME coefficient and LiNbO3 piezoelectric coefficient, showing that the composite possesses the potential applications in integration, miniaturization and high-frequency resonant sensor.
      通信作者: 马静, ma-jing@mail.tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51402164)资助的课题.
      Corresponding author: Ma Jing, ma-jing@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51402164).
    [1]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [2]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [3]

    Chu Z Q, Shi H D, Shi W L, Liu G X, Wu J G, Yang J K, Dong S X 2017 Adv. Mater. 29 1606022

    [4]

    Ma J, Shi Z, Nan C W 2007 Adv. Mater. 19 2571

    [5]

    Shi Z, Ma J, Lin Y H, Nan C W 2007 J. Appl. Phys. 101 043902

    [6]

    Zeng L Y, Zhou M H, Bi K, Lei M 2016 J. Appl. Phys. 119 034102

    [7]

    Bichurin M I, Petrov R V, Petrov V M 2013 Appl. Phys. Lett. 103 092902

    [8]

    Wang Y J, Hasanyan D, Li J F, Viehland D, Luo H S 2012 Appl. Phys. Lett. 100 202903

    [9]

    Zhang J T, Li P, Wen Y M, He W, Yang A C, Lu C J 2014 Sens. Actuator A: Phys. 214 149

    [10]

    Liu G X, Zhang C L, Dong S X 2014 J. Appl. Phys. 116 074104

    [11]

    Lu M C, Mei L, Jeong D Y, Xiang J, Xie H Q, Zhang Q M 2015 Appl. Phys. Lett. 106 112905

    [12]

    Fang Z, Mokhariwale N, Li F, Datta S, Zhang Q M 2011 IEEE Sens. J. 11 2260

    [13]

    Weis R S, Gaylord T K 1985 Appl. Phys. A 37 191

    [14]

    Wang Y, Jiang Y J 2003 Opt. Mater. 23 403

    [15]

    Kuo H Y, Slinger A, Bhattacharya K 2010 Smart Mater. Struct. 19 125010

    [16]

    Timopheev A A, Vidal J V, Kholkin A L, Sobolev N A 2013 J. Appl. Phys. 114 044102

    [17]

    Vidal J V, Timopheev A A, Kholkin A L, Sobolev N A 2015 Vacuum 122 286

    [18]

    Xin C Z, Ma J N, Ma J, Nan C W 2017 Sci. Bull. 62 388

    [19]

    Xin C Z, Ma J N, Ma J, Nan C W 2017 Acta Phys. Sin. 66 067502 (in Chinese) [辛成舟, 马健男, 马静, 南策文 2017 物理学报 66 067502]

    [20]

    Ma J N, Xin C Z, Ma J, Lin Y H, Nan C W 2016 J. Phys. D: Appl. Phys. 49 405002

    [21]

    Ma J N, Xin C Z, Ma J, Zhang Q M, Nan C W 2016 Sci. Bull. 61 378

  • [1]

    Nan C W, Bichurin M I, Dong S X, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101

    [2]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [3]

    Chu Z Q, Shi H D, Shi W L, Liu G X, Wu J G, Yang J K, Dong S X 2017 Adv. Mater. 29 1606022

    [4]

    Ma J, Shi Z, Nan C W 2007 Adv. Mater. 19 2571

    [5]

    Shi Z, Ma J, Lin Y H, Nan C W 2007 J. Appl. Phys. 101 043902

    [6]

    Zeng L Y, Zhou M H, Bi K, Lei M 2016 J. Appl. Phys. 119 034102

    [7]

    Bichurin M I, Petrov R V, Petrov V M 2013 Appl. Phys. Lett. 103 092902

    [8]

    Wang Y J, Hasanyan D, Li J F, Viehland D, Luo H S 2012 Appl. Phys. Lett. 100 202903

    [9]

    Zhang J T, Li P, Wen Y M, He W, Yang A C, Lu C J 2014 Sens. Actuator A: Phys. 214 149

    [10]

    Liu G X, Zhang C L, Dong S X 2014 J. Appl. Phys. 116 074104

    [11]

    Lu M C, Mei L, Jeong D Y, Xiang J, Xie H Q, Zhang Q M 2015 Appl. Phys. Lett. 106 112905

    [12]

    Fang Z, Mokhariwale N, Li F, Datta S, Zhang Q M 2011 IEEE Sens. J. 11 2260

    [13]

    Weis R S, Gaylord T K 1985 Appl. Phys. A 37 191

    [14]

    Wang Y, Jiang Y J 2003 Opt. Mater. 23 403

    [15]

    Kuo H Y, Slinger A, Bhattacharya K 2010 Smart Mater. Struct. 19 125010

    [16]

    Timopheev A A, Vidal J V, Kholkin A L, Sobolev N A 2013 J. Appl. Phys. 114 044102

    [17]

    Vidal J V, Timopheev A A, Kholkin A L, Sobolev N A 2015 Vacuum 122 286

    [18]

    Xin C Z, Ma J N, Ma J, Nan C W 2017 Sci. Bull. 62 388

    [19]

    Xin C Z, Ma J N, Ma J, Nan C W 2017 Acta Phys. Sin. 66 067502 (in Chinese) [辛成舟, 马健男, 马静, 南策文 2017 物理学报 66 067502]

    [20]

    Ma J N, Xin C Z, Ma J, Lin Y H, Nan C W 2016 J. Phys. D: Appl. Phys. 49 405002

    [21]

    Ma J N, Xin C Z, Ma J, Zhang Q M, Nan C W 2016 Sci. Bull. 61 378

  • [1] 李铭洲, 李志远. 应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220016
    [2] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱. 物理学报, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [3] 辛成舟, 马健男, 马静, 南策文. 厚度剪切模式铌酸锂基复合材料的磁电性能优化. 物理学报, 2017, 66(6): 067502. doi: 10.7498/aps.66.067502
    [4] 师丽红, 阎文博, 申绪男, 陈贵锋, 陈洪建, 乔会宾, 贾芳芳, 林爱调. 掺铁铌酸锂晶体中光致散射的锂组分和温度依赖关系研究. 物理学报, 2012, 61(23): 234207. doi: 10.7498/aps.61.234207
    [5] 张延芳, 文玉梅, 李平, 卞雷祥. 采用阶梯形弹性基底的磁致伸缩/压电复合结构磁电响应研究. 物理学报, 2009, 58(1): 546-553. doi: 10.7498/aps.58.546
    [6] 师丽红, 阎文博. 纯铌酸锂晶体红外光谱的低温研究. 物理学报, 2009, 58(7): 4987-4991. doi: 10.7498/aps.58.4987
    [7] 齐继伟, 李玉栋, 许京军, 崔国新, 孔凡磊, 孙 骞. 铌酸锂晶体中的磁光折变效应研究. 物理学报, 2007, 56(12): 7015-7022. doi: 10.7498/aps.56.7015
    [8] 闫卫国, 陈云琳, 王栋栋, 郭 娟, 张光寅. 掺镁铌酸锂亚微米结构畴反转的研究. 物理学报, 2006, 55(11): 5855-5858. doi: 10.7498/aps.55.5855
    [9] 姚江宏, 陈亚辉, 颜博霞, 邓浩亮, 孔勇发, 陈绍林, 许京军, 张光寅. 掺镁铌酸锂晶体亚微米畴结构特性研究. 物理学报, 2004, 53(12): 4369-4372. doi: 10.7498/aps.53.4369
    [10] 高垣梅, 刘思敏, 郭 儒, 黄春福, 汪大云. Y向切割掺杂铌酸锂晶体中的光耦合. 物理学报, 2004, 53(9): 2958-2963. doi: 10.7498/aps.53.2958
    [11] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 准位相匹配铌酸锂波导倍频特性分析与优化设计. 物理学报, 2002, 51(3): 565-572. doi: 10.7498/aps.51.565
    [12] 冯少新, 李宝会, 金庆华, 郭振亚, 丁大同. LiNbO3晶体中离子间相互作用势的经验参量的确定. 物理学报, 2000, 49(12): 2433-2436. doi: 10.7498/aps.49.2433
    [13] 汪 进, 杨 昆, 金 婵. 掺镁铌酸锂晶体结构的研究. 物理学报, 1999, 48(6): 1103-1106. doi: 10.7498/aps.48.1103
    [14] 刘建军, 张万林, 张光寅. 掺镁铌酸锂晶体的缺陷结构及其结晶化学分析. 物理学报, 1996, 45(11): 1852-1858. doi: 10.7498/aps.45.1852
    [15] 刘劲松, 梁昌洪, 安毓英, 李铭华, 金婵, 徐玉恒, 吴仲康. 鈰铕铌酸锂的双光束耦合异常温度特性与结构相变. 物理学报, 1994, 43(9): 1455-1459. doi: 10.7498/aps.43.1455
    [16] 冯锡淇, 应继锋, 王锦昌, 刘建成. OH-吸收带作为铌酸锂晶体缺陷结构的探针. 物理学报, 1988, 37(12): 2062-2067. doi: 10.7498/aps.37.2062
    [17] 冯国光, 杨翠英, 周玉清, 唐棣生. 结合会聚束电子衍射和高分辨电子显微术来测定十四铌酸锂的结构. 物理学报, 1984, 33(11): 1581-1585. doi: 10.7498/aps.33.1581
    [18] 刘金龙, 李惠章, 施仲坚, 杨银兰, 翁文生. 铌酸锂大单晶的生长及其性能. 物理学报, 1983, 32(4): 473-480. doi: 10.7498/aps.32.473
    [19] 超声研究室超声压电材料组. 片状铌酸锂单晶的生长及其特性. 物理学报, 1979, 28(6): 783-790. doi: 10.7498/aps.28.783
    [20] 晶体学室铌酸盐晶体研究组. 铌酸锶钠锂单晶的生长. 物理学报, 1979, 28(2): 229-233. doi: 10.7498/aps.28.229
计量
  • 文章访问数:  3148
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-25
  • 修回日期:  2018-05-18
  • 刊出日期:  2018-08-05

伸缩-剪切模式自偏置铌酸锂基复合材料的磁电性能和高频谐振响应

  • 1. 清华大学材料学院, 新型陶瓷与精细工艺国家重点实验室, 北京 100084
  • 通信作者: 马静, ma-jing@mail.tsinghua.edu.cn
    基金项目: 国家自然科学基金(批准号:51402164)资助的课题.

摘要: 选用多种切型铌酸锂(LiNbO3)单晶,研究了铁基非晶合金(Metglas)/LiNbO3叠层复合材料基于伸缩-剪切模式的磁电耦合性能,揭示了铌酸锂单晶压电系数与复合材料剪切磁电耦合系数的对应关系,在使用铌酸锂xzt/30切型时得到了最优化剪切磁电系数.通过SrFe12O19薄磁带提供偏置磁场,Metglas/LiNbO3磁电复合材料可在没有外加直流磁场时实现剪切磁电响应,并在0.991 MHz和3.51 MHz频率时分别测出了谐振磁电系数,有望将铌酸锂基剪切磁电复合材料用于高频磁场探测.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回