搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟

李锐 刘腾 陈翔 陈思聪 符义红 刘琳

引用本文:
Citation:

界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟

李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳

Influence of interface structure on nanoindentation behavior of Cu/Ni multilayer film: Atomic scale simulation

Li Rui, Liu Teng, Chen Xiang, Chen Si-Cong, Fu Yi-Hong, Liu Lin
PDF
导出引用
  • 金属多层膜调制周期下降到纳米级时,其力学性质会发生显著改变.Cu-Ni晶格失配度约为2.7%,可以形成共格界面和半共格界面,实验中实现沿[111]方向生长的调制周期为几纳米且具有异孪晶界面结构的Cu/Ni多层膜,其力学性质发生显著改变.本文采用分子动力学方法对共格界面、共格孪晶界面、半共格界面、半共格孪晶界面等四种不同界面结构的Cu/Ni多层膜进行纳米压痕模拟,研究压痕过程中不同界面结构类型的形变演化规律以及位错与界面的相互作用,获取Cu/Ni多层膜不同界面结构对其力学性能的影响特征.计算结果表明,不同界面结构的样品在不同压痕深度时表现出的强化或软化作用机理不同,软化机制主要是由于形成了平行于界面的分位错以及孪晶界面的迁移,强化机制主要是由于界面对位错的限定作用以及失配位错网状结构与孪晶界面迁移时所形成的弓形位错之间的相互作用.
    The mechanical properties of metal multilayers change significantly when the modulation period decreases to a nanoscale. As is well known, the lattice misfit between Ni and Cu is~2.7%, it means that the coherent and semi-coherent interfaces can form between the Ni and Cu atomic layer. Hetero-twin interface Cu/Ni multilayer film with a modulation period of several nanometers and grown along the[111] direction is realized experimentally, and the mechanical properties change significantly due to the effect of interfaces. In this study, molecular dynamics simulations on Cu/Ni multilayers with coherent, coherent twin, semi-coherent, and semi-coherent twin interfaces under nanoindentation are carried out to study the deformation evolutions of different interfaces and the interactions between dislocation and interfaces. Furthermore, the influence of Cu/Ni interface on the mechanical property is investigated. The simulation results show that the different interface structures exhibit different strengthening and/or softening mechanisms at different indentation depths. The hardness values of the Cu/Ni multilayer films with four different interface structures are different, and the hardness of the coherent interface is larger than the semi-coherent interface's. The hardness values of the four interface structures reside between the pure Cu and pure Ni. For the coherent twin interface, with the increase of the modulation ratio, the strengthening effect of the twin interface is enhanced. The softening effect for the coherent interface is mainly attributed to the generation of parallel dislocations and their proliferation. While for the semi-coherent interface, the mismatched networks are formed at the Cu/Ni interfaces, the softening effect on the movable dislocation is mainly the repulsion of the mismatched network, while the strengthening effect on the movable dislocation is the hindrance of the mismatched dislocation network. The strengthening of the coherent twin interface is attributed to the limited effect of twin interface on the movable dislocation within the monolayer. Unlike the coherent twin interface, the strengthening effect of the semi-coherent twin interface is mainly due to the mutual repulsion between the arched dislocation, which is generated within the twin interface, and the mismatched network. Furthermore, the pinning effect of misfit dislocation network will impede the migration of twin interfaces and will also enhance the mechanical property of Cu/Ni multilayer film.
      通信作者: 陈翔, chenxiang@cqupt.edu.cn
    • 基金项目: 重庆市杰出青年基金(批准号:cstc2014jcyjjq40004)、国家自然科学基金(批准号:11802047)、重庆市重点基金(批准号:cstc2015jcyjBX0135)和重庆市教委科学技术研究项目(批准号:KJ1600446)资助的课题.
      Corresponding author: Chen Xiang, chenxiang@cqupt.edu.cn
    • Funds: Project supported by the Financial Support from Chongqing Science Fund for Distinguished Young Scholars, China (Grant No. cstc2014jcyjjq40004), the National Natural Science Foundation of China (Grant No. 11802047), the Key Foundation of Chongqing, China (Grant No. cstc2015jcjyBX0135), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ1600446).
    [1]

    Misra A, Krug H 2001 Adv. Eng. Mater. 3 217

    [2]

    Li X, Bhushan B, Takashima K, Baek C W, Kim Y K 2003 Ultramicroscopy 97 481

    [3]

    Huang G S, Mei Y F 2016 Sci. China:Technol. 46 142 (in Chinese) [黄高山, 梅永丰 2016 中国科学:技术科学 46 142]

    [4]

    Huang G, Mei Y 2012 Adv. Mater. 24 2517

    [5]

    Clemens B M, Kung H, Barnett S A 1999 MRS Bull. 24 20

    [6]

    Misra A, Verdier M, Lu Y C, Kung H, Mitchell T E, Nastasi M 1998 Scripta Mater. 39 555

    [7]

    Koehler J S 1970 Phys. Rev. B 2 547

    [8]

    Embury J D, Hirth J P 1994 Acta Metall. Mater. 42 2051

    [9]

    Mckeown J, Misra A, Kung H, Hoagland R G, Nastasi M 2002 Scripta Mater. 46 593

    [10]

    Zhao Y, Peng X, Fu T, Sun R, Feng C, Wang Z 2015 Physica E 74 481

    [11]

    Yan X L, Coetsee E, Wang J Y, Swart H C, Terblans J J 2017 Appl. Surf. Sci. 411 73

    [12]

    Ren F, Zhao S, Li W, Tian B, Yin L, Volinsky A A 2011 Mater. Lett. 65 119

    [13]

    Zhu X Y, Liu X J, Zong R L, Zeng F, Pan F 2010 Mater. Sci. Eng. A 527 1243

    [14]

    Weng S, Ning H, Hu N, Yan C, Fu T, Peng X 2016 Mater. Des. 111 1

    [15]

    Fu T, Peng X, Xiang C, Weng S, Ning H, Li Q 2016 Sci. Reports 6 35665

    [16]

    Cheng D, Yan Z J, Yan L 2008 Acta Metall. Sin. 44 12 (in Chinese) [程东, 严志军, 严立 2008 金属学报 44 12]

    [17]

    Liu Y, Bufford D, Rios S, et al. 2012 J. Appl. Phys. 111 118

    [18]

    Yuan L, Jing P, Liu Y H, Xu Z H, Shan D B, Guo B 2014 Acta Phys. Sin. 63 016201 (in Chinese) [袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌 2014 物理学报 63 016201]

    [19]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [20]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [21]

    Johnson R A 1989 Phys. Rev. B:Condens. Matter 39 12554

    [22]

    Zhou X W, Wadley H N G 1998 J. Appl. Phys. 84 2301

    [23]

    Chang W Y, Fang T H, Lin S J, Huang J J 2010 Mol. Simul. 36 815

    [24]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [25]

    Hepburn D J, Ackland G J 2008 Phys. Rev. B:Condens. Matter 78

    [26]

    Fu T, Peng X, Weng S, Zhao Y, Gao F, Deng L 2016 Mater. Sci. Eng. A 658 1

    [27]

    Stukowski A 2012 Modell. Simul. Mater. Sci. Eng. 20 045021

    [28]

    Zhu Y X, Li Z H, Huang M S, Liu Y 2015 Int. J. Plast. 72 168

    [29]

    Cheng D, Yan Z J, Yan L 2007 Thin Solid Films 515 3698

    [30]

    Huang C, Peng X H, Fu T, Chen X, Xiang H, Li Q 2017 Mater. Sci. Eng. A 700 609

  • [1]

    Misra A, Krug H 2001 Adv. Eng. Mater. 3 217

    [2]

    Li X, Bhushan B, Takashima K, Baek C W, Kim Y K 2003 Ultramicroscopy 97 481

    [3]

    Huang G S, Mei Y F 2016 Sci. China:Technol. 46 142 (in Chinese) [黄高山, 梅永丰 2016 中国科学:技术科学 46 142]

    [4]

    Huang G, Mei Y 2012 Adv. Mater. 24 2517

    [5]

    Clemens B M, Kung H, Barnett S A 1999 MRS Bull. 24 20

    [6]

    Misra A, Verdier M, Lu Y C, Kung H, Mitchell T E, Nastasi M 1998 Scripta Mater. 39 555

    [7]

    Koehler J S 1970 Phys. Rev. B 2 547

    [8]

    Embury J D, Hirth J P 1994 Acta Metall. Mater. 42 2051

    [9]

    Mckeown J, Misra A, Kung H, Hoagland R G, Nastasi M 2002 Scripta Mater. 46 593

    [10]

    Zhao Y, Peng X, Fu T, Sun R, Feng C, Wang Z 2015 Physica E 74 481

    [11]

    Yan X L, Coetsee E, Wang J Y, Swart H C, Terblans J J 2017 Appl. Surf. Sci. 411 73

    [12]

    Ren F, Zhao S, Li W, Tian B, Yin L, Volinsky A A 2011 Mater. Lett. 65 119

    [13]

    Zhu X Y, Liu X J, Zong R L, Zeng F, Pan F 2010 Mater. Sci. Eng. A 527 1243

    [14]

    Weng S, Ning H, Hu N, Yan C, Fu T, Peng X 2016 Mater. Des. 111 1

    [15]

    Fu T, Peng X, Xiang C, Weng S, Ning H, Li Q 2016 Sci. Reports 6 35665

    [16]

    Cheng D, Yan Z J, Yan L 2008 Acta Metall. Sin. 44 12 (in Chinese) [程东, 严志军, 严立 2008 金属学报 44 12]

    [17]

    Liu Y, Bufford D, Rios S, et al. 2012 J. Appl. Phys. 111 118

    [18]

    Yuan L, Jing P, Liu Y H, Xu Z H, Shan D B, Guo B 2014 Acta Phys. Sin. 63 016201 (in Chinese) [袁林, 敬鹏, 刘艳华, 徐振海, 单德彬, 郭斌 2014 物理学报 63 016201]

    [19]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [20]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [21]

    Johnson R A 1989 Phys. Rev. B:Condens. Matter 39 12554

    [22]

    Zhou X W, Wadley H N G 1998 J. Appl. Phys. 84 2301

    [23]

    Chang W Y, Fang T H, Lin S J, Huang J J 2010 Mol. Simul. 36 815

    [24]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [25]

    Hepburn D J, Ackland G J 2008 Phys. Rev. B:Condens. Matter 78

    [26]

    Fu T, Peng X, Weng S, Zhao Y, Gao F, Deng L 2016 Mater. Sci. Eng. A 658 1

    [27]

    Stukowski A 2012 Modell. Simul. Mater. Sci. Eng. 20 045021

    [28]

    Zhu Y X, Li Z H, Huang M S, Liu Y 2015 Int. J. Plast. 72 168

    [29]

    Cheng D, Yan Z J, Yan L 2007 Thin Solid Films 515 3698

    [30]

    Huang C, Peng X H, Fu T, Chen X, Xiang H, Li Q 2017 Mater. Sci. Eng. A 700 609

  • [1] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220733
    [2] 王胜, 陈晶晶, 翁盛槟. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究. 物理学报, 2022, 71(2): 029601. doi: 10.7498/aps.71.20211305
    [3] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [4] 陈晶晶. 纳米孪晶界对可动位错演化特性与金属Al强化机理探究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211305
    [5] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [6] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [7] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [8] 胡兴健, 郑百林, 杨彪, 余金桂, 贺鹏飞, 岳珠峰. 初始压入位置对Ni基单晶合金纳米压痕影响研究. 物理学报, 2015, 64(7): 076201. doi: 10.7498/aps.64.076201
    [9] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟. 物理学报, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [10] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [11] 胡兴健, 郑百林, 胡腾越, 杨彪, 贺鹏飞, 岳珠峰. 考虑相界效应的Ni基单晶合金纳米压痕模拟. 物理学报, 2014, 63(17): 176201. doi: 10.7498/aps.63.176201
    [12] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究. 物理学报, 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [13] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [14] 何智兵, 阳志林, 闫建成, 宋之敏, 卢铁城. 辉光放电聚合物结构及力学性质研究. 物理学报, 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [15] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [16] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [17] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [18] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [19] 张建民, 徐可为. 纳米压痕法测量Cu的室温蠕变速率敏感指数. 物理学报, 2004, 53(8): 2439-2443. doi: 10.7498/aps.53.2439
    [20] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
计量
  • 文章访问数:  3186
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-14
  • 修回日期:  2018-07-12
  • 刊出日期:  2018-10-05

界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟

  • 1. 重庆邮电大学自动化学院, 重庆 400065;
  • 2. 重庆邮电大学先进制造工程学院, 重庆 400065;
  • 3. 重庆水泵厂有限责任公司, 重庆 400030
  • 通信作者: 陈翔, chenxiang@cqupt.edu.cn
    基金项目: 重庆市杰出青年基金(批准号:cstc2014jcyjjq40004)、国家自然科学基金(批准号:11802047)、重庆市重点基金(批准号:cstc2015jcyjBX0135)和重庆市教委科学技术研究项目(批准号:KJ1600446)资助的课题.

摘要: 金属多层膜调制周期下降到纳米级时,其力学性质会发生显著改变.Cu-Ni晶格失配度约为2.7%,可以形成共格界面和半共格界面,实验中实现沿[111]方向生长的调制周期为几纳米且具有异孪晶界面结构的Cu/Ni多层膜,其力学性质发生显著改变.本文采用分子动力学方法对共格界面、共格孪晶界面、半共格界面、半共格孪晶界面等四种不同界面结构的Cu/Ni多层膜进行纳米压痕模拟,研究压痕过程中不同界面结构类型的形变演化规律以及位错与界面的相互作用,获取Cu/Ni多层膜不同界面结构对其力学性能的影响特征.计算结果表明,不同界面结构的样品在不同压痕深度时表现出的强化或软化作用机理不同,软化机制主要是由于形成了平行于界面的分位错以及孪晶界面的迁移,强化机制主要是由于界面对位错的限定作用以及失配位错网状结构与孪晶界面迁移时所形成的弓形位错之间的相互作用.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回