搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双层多指标优化的水下偏振成像技术

高晨栋 赵明琳 卢德贺 窦健泰

引用本文:
Citation:

基于双层多指标优化的水下偏振成像技术

高晨栋, 赵明琳, 卢德贺, 窦健泰

Underwater polarization imaging based on two-layer multi-index optimization

Gao Chen-Dong, Zhao Ming-Lin, Lu De-He, Dou Jian-Tai
PDF
HTML
导出引用
  • 无先验水下主动偏振成像方法能够实现目标信息光偏振度和后向散射光偏振度的自动获取, 但该方法在反演过程中仅追寻高对比度这一单一指标, 有时会导致自动获取的两项偏振反演参数过于相近, 使图像复原效果不理想, 且常伴有大量噪声. 针对上述仅追求单一指标导致复原图像质量不理想的问题, 本文提出一种基于双层多指标优化的水下偏振成像方法. 首先, 第1层以互信息和对比度为目标函数, 基于多目标遗传优化算法自动获取偏振参数最优解集; 其次, 选择信息熵为第2层目标函数, 遍历最优解集, 获取偏振参数最终解, 并将其代入成像模型, 获取复原图像; 最终, 根据所获偏振参数之差, 选取适当数字图像处理手段进一步提升复原图像质量. 实验结果表明, 无论背景区域存在与否, 无论目标物偏振度高低, 本方法均能有效增强图像细节, 平衡各项图像质量评价指标, 得到综合质量较高的复原图像.
    Underwater imaging is of great significance in exploring seabed resource , monitoring marine environment, implementing underwater rescue and military reconnaissance, etc. by providing clear vison. Among various underwater imaging techniques, the polarization imaging is considered to be an effective way to improve the quality of underwater imaging. It can realize underwater image restoration by using the difference in polarization characteristic between the target light and backscattered light. A classical underwater active polarization imaging method was presented by Treibitz [Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385], in which the degrees of linear polarization (DoLPs) of target light and backscattered light are used to recover clear image. A variety of improved methods have been derived from this, but most of them require background areas and human-computer interaction. Then, a new underwater active polarization imaging method without prior knowledge was presented by Zhao [Zhao Y, He W, Ren H, Li Y, Fu Y 2022 Opt. Lasers Eng. 148 106777], in which the DoLPs of target light and backscattered light can be automatically obtained without background region. However, sometimes the above two parameters are very close and thus introduce a lot of noise into the restored images, for this method takes only the contrast into account.In this work, an underwater active polarization imaging method based on two-layer multi-index optimization is proposed. First, the mutual information and contrast are taken as the upper objective functions, and the Pareto optimal solution set is obtained by the multi-objective genetic optimization algorithm. Second, the information entropy is taken as the lower objective function to obtain the optimal parameters from this optimal solution set. Based on the optimal parameters, the restored images are obtained. According to the difference between the DoLPs of target light and backscattered light, these restored images are further improved by the digital image processing method.The experimental results indicate that our method can not only enhance image details effectively but also balance various evaluation indexes of the imaging quality to obtain high-quality restored images. The proposed algorithm is suitable for underwater targets with low and high DoLPs, with or without background regions.
      通信作者: 赵明琳, zhaominglin90@163.com
    • 基金项目: 江苏省研究生科研与实践创新计划(批准号: KYCX21_3475)和江苏省重点研发计划(批准号: BE2022143)资助的课题.
      Corresponding author: Zhao Ming-Lin, zhaominglin90@163.com
    • Funds: Project supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21_3475), and the Jiangsu Provincial Key Research and Development Program, China (Grant No. BE2022143).
    [1]

    Komatsu S, Markman A, Javidi B 2018 Opt. Lett. 43 3261Google Scholar

    [2]

    Panetta K, Gao C, Agaian S 2015 IEEE J. Ocean. Eng. 41 541Google Scholar

    [3]

    Gao S B, Zhang M, Zhao Q, Zhang X S, Li Y J 2019 IEEE Trans. Image Process. 28 5580Google Scholar

    [4]

    Bailey G N, Flemming N C 2008 Quat. Sci. Rev. 27 2153Google Scholar

    [5]

    刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏 2021 物理学报 70 164201Google Scholar

    Liu F, Sun S J, Han P L, Zhao L, Shao X P 2021 Acta Phys. Sin. 70 164201Google Scholar

    [6]

    Schechner Y Y, Karpel N 2004 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Washington DC, USA Jun. 27–July 2, 2004 p536

    [7]

    Li N, Zhao Y, Pan Q, Kong S 2018 Opt. Express 26 16488Google Scholar

    [8]

    Schechner Y Y, Karpel N 2005 IEEE J. Ocean. Eng. 30 570Google Scholar

    [9]

    Schechner Y Y, Narasimhan S G, Nayar S K 2003 Appl. Opt. 42 511Google Scholar

    [10]

    Jaffe J S 1990 IEEE J. Ocean. Eng. 15 101Google Scholar

    [11]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385Google Scholar

    [12]

    Li X, Hu H, Zhao L, Wang H, Yu Y, Wu L, Liu T 2018 Sci. Rep. 8 12430Google Scholar

    [13]

    封斐, 吴国俊, 吴亚风, 苗宇宏, 刘博 2020 光学学报 40 2111002Google Scholar

    Feng F, Wu G J, Wu Y F, Miao Y H, Liu B 2020 Acta Optica Sin. 40 2111002Google Scholar

    [14]

    Zhao Y, He W, Ren H, Li Y, Fu Y 2022 Opt. Lasers Eng. 148 106777Google Scholar

    [15]

    Yang L, Liang J, Zhang W, Ju H, Ren L, Shao X 2019 Opt. Commun. 438 96Google Scholar

    [16]

    Rowe M P, Pugh E N, Tyo J S, Engheta N 1995 Opt. Lett. 20 608Google Scholar

    [17]

    管今哥, 朱京平, 田恒, 侯洵 2015 物理学报 64 224203Google Scholar

    Guan J G, Zhu J P, Tian H, Hou X 2015 Acta Phys. Sin. 64 224203Google Scholar

    [18]

    Liu F, Han P, Wei Y, Yang K, Huang S, Li X, Zhang G, Bai L, Shao X 2018 Opt. Lett. 43 4903Google Scholar

    [19]

    Holland J H 1992 Sci. Am. 267 66Google Scholar

    [20]

    Deb K, Pratap A, Agarwal S, Meyarivan T 2002 IEEE Trans. Evolut. Comput. 6 182Google Scholar

    [21]

    Sardy S, Tseng P, Bruce A. 2001 IEEE Trans. Signal Process. 49 1146Google Scholar

    [22]

    Reza A 2004 VLSI Signal Process. 38 35Google Scholar

    [23]

    Mittal A, Soundararajan R, Bovik A C 2012 IEEE Signal Process. Lett. 20 209Google Scholar

  • 图 1  水下主动偏振成像模型

    Fig. 1.  Underwater active polarization imaging model.

    图 2  双层多指标优化算法流程图

    Fig. 2.  Flow chart of the two-layer multi-index optimization algorithm.

    图 3  水下偏振成像实验装置示意图

    Fig. 3.  Schematic of experimental setup for underwater polarization imaging.

    图 4  最优解集中不同解值的复原结果对比 (a1)—(d1) 不同解值的目标信息光图像; (a2)—(d2) 不同解值的后向散射光图像

    Fig. 4.  Comparison of restoration results with different solution values: (a1)–(d1) Images of target signal light; (a2)–(d2) images of backscattered light.

    图 5  含背景图像复原结果对比

    Fig. 5.  Comparison of restoration results of images with background.

    图 6  图5划线处光强值分布曲线图 (a) 玩具图像划线处; (b) 金属尺图像划线处

    Fig. 6.  Intensity distribution at the scribe lines of Fig. 5: (a) Scribe line of toy; (b) scribe line of metal ruler.

    图 7  无背景图像复原结果对比

    Fig. 7.  Comparison of restoration results of images without background.

    表 1  不同解值复原图像的客观指标评价结果

    Table 1.  Objective index evaluation results of restored images with different solution values.

    Index(a)(b)(c)(d)
    MI(B, S)2.5292.9692.0623.093
    C(S)0.2030.2790.0670.306
    Entropy(S)4.8344.6954.4554.953
    下载: 导出CSV

    表 2  含背景图像偏振反演参数对比

    Table 2.  Comparison of polarization inversion parameters of restored images with background.

    ParameterToyRulerCube-coin
    TreibitzZhaoOurTreibitzZhaoOurTreibitzZhaoOur
    Pobj0.1900.2490.24810.5030.50110.6680.649
    Pscat0.2910.2710.2720.4790.4950.4450.6590.6510.586
    |Pdif|0.1010.0220.0240.5210.0080.0560.3410.0170.063
    下载: 导出CSV

    表 3  含背景复原图像的客观评价结果

    Table 3.  Objective index evaluation results of restored images with background.

    ImageSNREntropyContrastNIQE
    Toy-Intensity15.6075.3730.0339.208
    Toy-Treibitz4.1205.9490.09611.008
    Toy-Zhao3.2695.1830.31911.889
    Toy-Our3.6537.2790.2878.989
    Ruler-Intensity24.0473.8260.01110.126
    Ruler-Treibitz3.3683.0590.0088.337
    Ruler-Zhao2.9542.0790.44815.465
    Ruler-Our6.3186.9710.13814.719
    Cube-coin-Intensity17.7514.9510.0187.982
    Cube-coin-Treibitz1.2813.2940.0147.046
    Cube-coin-Zhao2.5352.5320.40712.732
    Cube-coin-Our7.0287.6350.17812.154
    下载: 导出CSV

    表 4  无背景复原图像的客观评价结果

    Table 4.  Objective index evaluation results of restored images without background.

    ImageSNREntropyContrastNIQE
    Toy-Intensity17.1015.3190.0299.006
    Toy-CLAHE13.2836.2140.05910.357
    Toy-Zhao6.3146.0830.12715.829
    Toy-Our5.2696.9140.14516.152
    Ruler-Intensity15.7946.2840.0629.391
    Ruler-CLAHE15.3896.4420.06710.395
    Ruler-Zhao3.4241.1540.49215.277
    Ruler-Our9.8897.4210.12819.501
    Cube-coin-Intensity16.4775.3130.0237.727
    Cube-coin-CLAHE14.1396.0480.0419.149
    Cube-coin-Zhao2.2101.8280.43812.893
    Cube-coin-Our3.4776.7530.18712.269
    下载: 导出CSV

    表 5  无背景复原图像偏振反演参数对比

    Table 5.  Comparison of polarization inversion parameters of restored images without background.

    ParameterToyRulerCube-coin
    ZhaoOurZhaoOurZhaoOur
    Pobj0.2230.1990.3280.3340.6560.687
    Pscat0.2710.2540.3190.2650.6430.613
    |Pdif|0.0480.0550.0090.0690.0130.074
    下载: 导出CSV
  • [1]

    Komatsu S, Markman A, Javidi B 2018 Opt. Lett. 43 3261Google Scholar

    [2]

    Panetta K, Gao C, Agaian S 2015 IEEE J. Ocean. Eng. 41 541Google Scholar

    [3]

    Gao S B, Zhang M, Zhao Q, Zhang X S, Li Y J 2019 IEEE Trans. Image Process. 28 5580Google Scholar

    [4]

    Bailey G N, Flemming N C 2008 Quat. Sci. Rev. 27 2153Google Scholar

    [5]

    刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏 2021 物理学报 70 164201Google Scholar

    Liu F, Sun S J, Han P L, Zhao L, Shao X P 2021 Acta Phys. Sin. 70 164201Google Scholar

    [6]

    Schechner Y Y, Karpel N 2004 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Washington DC, USA Jun. 27–July 2, 2004 p536

    [7]

    Li N, Zhao Y, Pan Q, Kong S 2018 Opt. Express 26 16488Google Scholar

    [8]

    Schechner Y Y, Karpel N 2005 IEEE J. Ocean. Eng. 30 570Google Scholar

    [9]

    Schechner Y Y, Narasimhan S G, Nayar S K 2003 Appl. Opt. 42 511Google Scholar

    [10]

    Jaffe J S 1990 IEEE J. Ocean. Eng. 15 101Google Scholar

    [11]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385Google Scholar

    [12]

    Li X, Hu H, Zhao L, Wang H, Yu Y, Wu L, Liu T 2018 Sci. Rep. 8 12430Google Scholar

    [13]

    封斐, 吴国俊, 吴亚风, 苗宇宏, 刘博 2020 光学学报 40 2111002Google Scholar

    Feng F, Wu G J, Wu Y F, Miao Y H, Liu B 2020 Acta Optica Sin. 40 2111002Google Scholar

    [14]

    Zhao Y, He W, Ren H, Li Y, Fu Y 2022 Opt. Lasers Eng. 148 106777Google Scholar

    [15]

    Yang L, Liang J, Zhang W, Ju H, Ren L, Shao X 2019 Opt. Commun. 438 96Google Scholar

    [16]

    Rowe M P, Pugh E N, Tyo J S, Engheta N 1995 Opt. Lett. 20 608Google Scholar

    [17]

    管今哥, 朱京平, 田恒, 侯洵 2015 物理学报 64 224203Google Scholar

    Guan J G, Zhu J P, Tian H, Hou X 2015 Acta Phys. Sin. 64 224203Google Scholar

    [18]

    Liu F, Han P, Wei Y, Yang K, Huang S, Li X, Zhang G, Bai L, Shao X 2018 Opt. Lett. 43 4903Google Scholar

    [19]

    Holland J H 1992 Sci. Am. 267 66Google Scholar

    [20]

    Deb K, Pratap A, Agarwal S, Meyarivan T 2002 IEEE Trans. Evolut. Comput. 6 182Google Scholar

    [21]

    Sardy S, Tseng P, Bruce A. 2001 IEEE Trans. Signal Process. 49 1146Google Scholar

    [22]

    Reza A 2004 VLSI Signal Process. 38 35Google Scholar

    [23]

    Mittal A, Soundararajan R, Bovik A C 2012 IEEE Signal Process. Lett. 20 209Google Scholar

  • [1] 任立庆, 杨强, 姬超燃, 池娇, 胡云, 魏迎春, 许金友. 基于二次谐波产生光谱与显微成像的CdS纳米线空间取向研究. 物理学报, 2024, 73(16): 164207. doi: 10.7498/aps.73.20240753
    [2] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术. 物理学报, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [3] 赵富, 胡渝曜, 王鹏, 刘军. 偏振复用散射成像. 物理学报, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [4] 徐菁焓, 吴国俊, 董晶, 于洋, 封斐, 刘博. 基于Stokes矢量差分法的背景光偏振特性研究. 物理学报, 2023, 72(24): 244201. doi: 10.7498/aps.72.20230639
    [5] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术. 物理学报, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [6] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究. 物理学报, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [7] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [8] 刘宾, 赵鹏翔, 赵霞, 罗悦, 张立超. 融合偏振信息的多孔径水下成像算法. 物理学报, 2020, 69(18): 184202. doi: 10.7498/aps.69.20200471
    [9] 卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏. 浅海被动水下偏振成像探测方法. 物理学报, 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [10] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏. 多尺度水下偏振成像方法. 物理学报, 2018, 67(5): 054202. doi: 10.7498/aps.67.20172009
    [11] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [12] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [13] 殷澄, 许田, 陈秉岩, 韩庆邦. 金属粒子阵列共振的偏振特性. 物理学报, 2015, 64(16): 164202. doi: 10.7498/aps.64.164202
    [14] 李克武, 王志斌, 杨常青, 张瑞, 王耀利, 宋雁鹏. 基于声光滤光和液晶相位调谐的高光谱全偏振成像新技术. 物理学报, 2015, 64(14): 140702. doi: 10.7498/aps.64.140702
    [15] 管今哥, 朱京平, 田恒, 侯洵. 基于Stokes矢量的实时偏振差分水下成像研究. 物理学报, 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [16] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析. 物理学报, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [17] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作. 物理学报, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [18] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法. 物理学报, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [19] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响. 物理学报, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [20] 刘丽想, 杜国浩, 胡 雯, 骆玉宇, 谢红兰, 陈 敏, 肖体乔. 利用定量相衬成像消除X射线同轴轮廓成像中散射的影响. 物理学报, 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
计量
  • 文章访问数:  4498
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-21
  • 修回日期:  2022-12-12
  • 上网日期:  2023-02-09
  • 刊出日期:  2023-04-05

/

返回文章
返回