搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉伸形变及电场作用对黑磷烯吸附Si原子电学特性影响的密度泛函理论研究

卫琳 刘贵立 王家鑫 穆光耀 张国英

引用本文:
Citation:

拉伸形变及电场作用对黑磷烯吸附Si原子电学特性影响的密度泛函理论研究

卫琳, 刘贵立, 王家鑫, 穆光耀, 张国英

Density functional theory study on influence of tensile deformation and electric field on electrical properties of Si atom adsorbed on black phosphorene

Wei Lin, Liu Gui-Li, Wang Jia-Xin, Mu Guang-Yao, Zhang Guo-Ying
PDF
HTML
导出引用
  • 构建了覆盖度为2.778%的黑磷烯吸附硅原子模型, 基于密度泛函理论计算了模型的电子特性, 并通过应力及电场对其电子特性进行调控. 研究表明: 当前研究的覆盖度下, Si原子的吸附导致黑磷烯几何对称性被破坏, 加剧了体系内的电荷转移, 完成轨道再杂化. 使黑磷烯带隙消失, 实现了其由半导体向准金属的转变. 其稳定的吸附位是位于P原子环中间的H位. 拉伸和电场均降低了黑磷烯体系稳定性. 拉伸形变使黑磷烯吸附Si原子结构打开带隙, 且带隙与形变量成正比, 实现对其带隙的调控. 电场与拉伸共作用下, 电场的引入使黑磷烯吸附Si原子带隙变窄且完成体系由直接带隙向间接带隙的转变. 带隙依旧随形变量增加而增加. 吸附Si原子的黑磷烯体系带隙可调性高于未吸附体系, 且易于实现带隙的稳定调控.
    In this paper, a model of Si atom adsorbed on black phosphorene with a coverage of 2.778% is constructed and the electronic properties of the model are calculated based on density functional theory. Moreover, the electronic properties are regulated by stress and electric field. Under the coverage of the current research, the results show that the adsorption of Si atoms results in the destruction of the black phosphorene’s geometric symmetry, which intensifies the charge transfer in the system and completes the orbital re-hybrid. The band gap of black phosphorene thus disappears and the transition from semiconductor to quasi metal is completed. The stable adsorption is at the H site in the middle of the P atomic ring. Both tensile field and electric field reduce the stability of the system. Owing to the tensile deformation, the band gap is opened by the structure of Si atom adsorbed on black phosphorene. And since the band gap is proportional to the deformation variable, it can be regulated and controlled. Under the combined action of electric field and tensile, the introduction of the electric field leads the band gap of Si adsorbed on black phosphorene system to be narrowed and the transition from the direct band gap to an indirect one to be completed. The band gap still goes up in proportion to the increase of deformation. The band gap of Si atom adsorbed on black phosphorene system is more adjustable than that of the Si atom that is not adsorbed on black phosphorene system, and the stable adjustment of the band gap is more likely to be realized.
      通信作者: 刘贵立, garylll@sina.com
    • 基金项目: 国家自然科学基金(批准号: 51371049)、辽宁省自然科学基金(批准号: 20102173)和辽宁省教育厅计划(批准号: LZGD2019003)资助的课题
      Corresponding author: Liu Gui-Li, garylll@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51371049), the Natural Science Foundation of Liaoning Province, China (Grant No. 20102173), and the Liaoning Provincial Department of Education Planned Project of China (Grant No. LZGD2019003).
    [1]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [2]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [3]

    James B, Matin A, Joy C, Chen Y Z, Ho A G, Valerio A, Raj S V, Yang G, Crozier K B, Yu-Lun C 2018 Nat. Photonics 12 601Google Scholar

    [4]

    Avsar A, Tan J Y, Kurpas M, Gmitra M, Watanabe K, Taniguchi T, Fabian J, Özyilmaz B 2017 Nat. Phys. 13 888Google Scholar

    [5]

    Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H, Zhang Y 2016 Nat. Nanotechnol. 11 593Google Scholar

    [6]

    Chen X, Lu X, Deng B, Sinai O, Shao Y, Li C, Yuan S, Tran V, Watanabe K, Taniguchi T, Naveh D, Yang L, Xia F 2017 Nat. Commun. 8 1672Google Scholar

    [7]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247Google Scholar

    [8]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [9]

    Deng B, Tran V, Xie Y, Hao J, Cheng L, Guo Q, Wang X, He T, Koester S J, Han W 2017 Nat. Commun. 8 14474Google Scholar

    [10]

    Buscema M, Groenendijk D J, Steele G A, Zant H, Castellanos-Gomez A 2014 Nat. Commun. 5 4651Google Scholar

    [11]

    Feng X, Huang X, Chen L, Tan W C, Wang L, Ang K W 2018 Adv. Funct. Mater. 28 1801524Google Scholar

    [12]

    Huang L, Dong B, Guo X, Chang Y, Chen N, Huang X, Liao W, Zhu C, Wang H, Lee C, Ang K W 2018 ACS Nano 13 913

    [13]

    Castellanos-Gomez A 2015 J. Phys. Chem. Lett. 6 4280Google Scholar

    [14]

    Rajabali M, Esfandiari M, Rajabali S, Vakili-Tabatabaei M, Mohajerzadeh S, Mohajerzadeh S 2020 Adv. Mater. Interfaces 7 2000774Google Scholar

    [15]

    Rajabali M, Mohajerzadeh S 2019 Phys. Status Solidi RRL 13 1900197Google Scholar

    [16]

    Xu Y, Shi X, Zhang Y, Zhang H, Zhang K, Huang Z, Xu X, Guo J, Zhang H, Sun L, Zheng Z, Pan A, Zhang K 2020 Nat. Commun. 11 1330Google Scholar

    [17]

    Soo-Yeon C, Youhan L, Hyeong-Jun K, Hyunju J, Jong-Seon K 2016 Adv. Mater. 28 7020Google Scholar

    [18]

    Tyagi D, Wang H, Huang W, Hu L, Tang Y, Guo Z, Ouyang Z, Zhang H 2020 Nanoscale 12 3535Google Scholar

    [19]

    Prajapati Y K, Pal S, Verma A, Saini J P 2019 IET Optoelectron. 13 196Google Scholar

    [20]

    Kumar R, Pal S, Verma A, Prajapati Y K, Saini J P 2020 Superlattices Microstruct. 145 106591Google Scholar

    [21]

    Kumar P, Gupta M, Singh K 2020 Silicon 12 2809Google Scholar

    [22]

    Hui W, Yi C 2012 Nano Today 7 414Google Scholar

    [23]

    Obrovac M N, Christensen L 2004 Electrochem. Solid-State Lett. 7 A93Google Scholar

    [24]

    Pinson M B, Bazant M Z 2012 J. Electrochem. Soc. 160 A243Google Scholar

    [25]

    Carvalho A, Neto A 2015 ACS Central Sci. 1 289Google Scholar

    [26]

    Carvalho A, Wang M, Zhu X, Rodin A S, Su H, Neto A C 2016 Nat. Rev. Mater. 1 16061Google Scholar

    [27]

    Zhang C, Yu M, Anderson G, Dharmasena R R, Sumanasekera G 2017 Nanotechnology 28 075401Google Scholar

    [28]

    Sun J, Lee H, Pasta M, Yuan H, Zheng G, Sun Y, Li Y, Cui Y 2015 Nat. Nanotechnol. 10 980Google Scholar

    [29]

    Park C M, Sohn H J 2007 Adv. Mater. 19 2465Google Scholar

    [30]

    Arie A A, Lee J K 2013 Materials Science Forum 737 80Google Scholar

    [31]

    Domi Y, Usui H, Shimizu M, Kakimoto Y, Sakaguchi H 2016 ACS Appl. Mater. Interfaces 8 7125Google Scholar

    [32]

    Kim J S, Choi W, Byun D, Lee J K 2012 Solid State Ionics 212 43Google Scholar

    [33]

    Song J O, Shim H T, Byun D J, Lee J K 2007 Solid State Phenom. 124-126 1063Google Scholar

    [34]

    Yan C, Liu Q, Gao J, Yang Z, He D 2017 Beilstein J. Nanotechnol. 8 222Google Scholar

    [35]

    彭勃, 徐耀林, Fokko M 2017 物理化学学报 33 2127Google Scholar

    Peng B, Xu Y, Fokko M 2017 Acta Phys.-Chim. Sin. 33 2127Google Scholar

    [36]

    Shojaei F, Hahn J R, Kang H S 2016 J. Phys. Chem. C 120 17106Google Scholar

    [37]

    Olmedo E M, Garza C, Fomine S 2019 J. Mol. Model. 25 292Google Scholar

    [38]

    Segall M, Lindan P, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [39]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 77 3865Google Scholar

    [40]

    Heyd J, Scuseria G E 2003 J. Chem. Phys. 118 8207Google Scholar

    [41]

    Luo Y, Ren C, Wang S, Li S, Zhang P, Yu J, Sun M, Sun Z, Tang W 2018 Nanoscale Res. Lett. 13 282Google Scholar

    [42]

    曾祥明, 鄢慧君, 欧阳楚英 2012 物理学报 61 247101Google Scholar

    Zeng X M, Yan H J, Ouyang C Y 2012 Acta Phys. Sin. 61 247101Google Scholar

    [43]

    Mu G Y, Liu G L, Zhang G Y 2020 Int. J. Mod. Phys. B 34 2050191Google Scholar

    [44]

    Du Y, Ouyang C, Shi S, Lei M 2010 J. Appl. Phys. 107 0937181Google Scholar

    [45]

    Ge X, Zhou X H, Ye X, Chen X S 2020 Chem. Phys. Lett. 740 137075Google Scholar

    [46]

    Durajski A P, Gruszka K M, Niegodajew P 2020 Appl. Surf. Sci. 532 147377Google Scholar

    [47]

    El-Hachimi A G, Oubram O, Sadoqi M 2020 Superlattices Microstruct. 146 106673Google Scholar

    [48]

    Xu Y, Liu G, Xing S, Zhao G, Yang J 2020 J. Mater. Chem. C 8 14902Google Scholar

    [49]

    Zhou Y, Zhang M, Guo Z Miao L 2017 Mater. Horiz. 4 997Google Scholar

    [50]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [51]

    Hou X H, Deng Z C, Zhang K 2017 Physica E 88 252Google Scholar

    [52]

    Ferrari A C, Meyer J C, Scardaci V 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [53]

    Wang J X, Wang Y, Liu G L, Wei L, Zhang G Y 2020 Physica B 578 411755Google Scholar

    [54]

    陈献, 程梅娟, 吴顺情, 朱梓忠 2017 物理学报 66 107102Google Scholar

    Chen X, Cheng M J, Wu S Q, Zhu Z Z 2017 Acta Phys. Sin. 66 107102Google Scholar

    [55]

    Sabzyan H, Sadeghpour N 2016 Z. Naturforsch. , A:Phys. Sci. 72 1Google Scholar

    [56]

    张国英, 焦兴强, 刘业舒, 张安国, 孟春雪 2020 物理学报 69 237101

    Zhang G Y, Jiao X Q, Liu Y S, Zhang A G, Meng C X 2020 Acta Phys. Sin. 69 237101

    [57]

    Tran V, Soklaski R, Liang Y, Yang L 2014 Phys. Rev. B 89 235319Google Scholar

    [58]

    Rodin A S, Carvalho A, Neto A 2014 Phys. Rev. Lett. 112 176801Google Scholar

    [59]

    Gazzari S, Wrighton-Araneda K, Cortés-Arriagada D 2020 Surf. Interfaces 21 100786Google Scholar

    [60]

    Carmel S, Subramanian S, Rathinam R, Bhattacharyya A 2020 J. Appl. Phys. 127 094303Google Scholar

    [61]

    Cakır D, Sahin H, Peeters F M 2014 Phys. Rev. B 90 205421Google Scholar

    [62]

    Xie Z, Hui L, Wang J, Zhu G, Chen Z, Li C 2018 Comput. Mater. Sci. 144 304Google Scholar

    [63]

    Yan L, Yang S, Li J 2014 J. Phys. Chem. C 118 23970Google Scholar

    [64]

    Yu W Z, Yan J A, Gao S P 2015 Nanoscale Res. Lett. 10 351Google Scholar

    [65]

    Lü H Y, Lu W J, Shao D F, Sun Y P 2014 Phys. Rev. B 90 085433Google Scholar

    [66]

    Fei R, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [67]

    Kumar P, Bhadoria B S, Kumar S, Bhowmick S, Chauhan Y S, Agarwal A 2016 Phys. Rev. B 93 195428Google Scholar

    [68]

    Peng X, Wei Q, Copple A 2014 Phys. Rev. 90 0854021Google Scholar

    [69]

    Karki B, Freelon B, Rajapakse M, Musa R, Riyadh S, Morris B, Abu U, Yu M, Sumanasekera G, Jasinski J B 2020 Nanotechnology 31 425707Google Scholar

    [70]

    Li Y, Hu Z, Lin S, Lai S K, Wei J, Shu P L 2017 Adv. Funct. Mater. 27 1600986Google Scholar

    [71]

    Luis V G, Riccardo F, Andres C G 2019 Nanoscale 11 12080Google Scholar

    [72]

    Liang S, Hasan M, Seo J H 2019 Nanomaterials 9 566Google Scholar

    [73]

    Singh V, Joung D, Lei Z, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178Google Scholar

    [74]

    Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G 2011 ACS Nano 5 3645Google Scholar

    [75]

    Tang H M, Gao S P 2019 Comput. Mater. Sci. ence 158 88Google Scholar

    [76]

    杨兆曜2017 硕士学位论文 (无锡: 江南大学)

    Yang Z Y 2017 M. D. Thesis (Wuxi: Jiangnan University) (in Chinese)

    [77]

    Jiang J W, Park H S 2014 Nat. Commun. 5 4727Google Scholar

  • 图 1  本征黑磷烯模型 (a)黑磷烯的主视图、俯视图、侧视图; (b)黑磷烯结构示意图

    Fig. 1.  Intrinsic black phosphorene model: (a) Front view, top view, and side view of black phosphorene; (b) schematic diagram of the structure of black phosphorene.

    图 2  黑磷烯能带结构和DOS

    Fig. 2.  Band structure and DOS of black phosphorene.

    图 3  黑磷烯吸附Si原子模型 (a)主视图; (b)示意图; (c) P原子编号示意图

    Fig. 3.  Si adsorbed on black phosphorene model: (a) Main view; (b) diagrammatic sketch; (c) numbering diagram of P atom.

    图 4  黑磷烯吸附Si原子模型几何优化结构 (a) T位; (b) B位; (c) H位

    Fig. 4.  Geometry optimization of Si adsorbed on black phosphorene model: (a) T site; (b) B site; (c) H site.

    图 5  黑磷体系能带结构 (a)本征黑磷烯; (b) T位吸附; (c) B位吸附; (d) H位吸附

    Fig. 5.  Band structure of black phosphorene system: (a) Intrinsic black phosphorene; (b) T site adsorption; (c) B site adsorption; (d) H site adsorption.

    图 6  黑磷烯吸附体系DOS (a) T位; (b) B位; (c) H位

    Fig. 6.  The DOS of Si adsorbed on black phosphorene system: (a) T site; (b) B site; (c) H site.

    图 7  (a)单个P原子DOS图; (b) P原子得失电子示意图; 红色球体代表得到电子的P原子, 蓝色球体代表失去电子的P原子

    Fig. 7.  (a) DOS diagram of single P atom; (b) schematic diagram of gain and loss of electrons of P atom. The red sphere represents the P atom that gets electrons, and the blue sphere represents the P atom that loses electrons.

    图 8  黑磷烯电荷差分密度图 (a)本征黑磷烯; (b)黑磷烯吸附Si原子

    Fig. 8.  Differential charge density of the black phosphorene: (a) Intrinsic black phosphorene; (b) Si adsorbed on black phosphorene system.

    图 9  本征黑磷烯与黑磷烯吸附体系电荷密度图 (a)主视图; (b)俯视图; (c)侧视图

    Fig. 9.  Charge density diagram of the adsorption system of intrinsic black phosphorene and black phosphorene: (a) Main view; (b) top view; (c) side view.

    图 10  考虑泊松比前后、拉伸形变量为2%的黑磷烯能带结构 (a)纯黑磷烯; (b)黑磷烯吸附Si原子; (c)电场与形变共作用的纯黑磷烯; (d) 电场与形变共作用的黑磷烯吸附Si原子

    Fig. 10.  Band structure of black phosphorene with 2% tensile deformation before and after considering Poisson’s ratio (a) Pure BP, (b) Si absorbed on BP, (c) pure BP with co-action of electric field and deformation, (d) Si absorbed on BP with co-action of electric field and deformation.

    图 11  (a)—(e)拉伸形变量为2%—10%的黑磷烯能带结构; (f)—(j)拉伸形变量为2%—10%的黑磷烯吸附Si原子体系能带结构

    Fig. 11.  (a)−(e) Band structure of black phosphorene with 2%−10% tensile deformation; (f)−(j) band structure of Si adsorbed on black phosphorene with 2%−10% tensile deformation.

    图 12  (a)形变为8%的黑磷烯结构俯视图; (b)形变为8%的黑磷烯电荷差分密度

    Fig. 12.  (a) Top view of the structure of 8% tensile deformation black phosphorene; (b) differential charge density of 8% tensile deformation phosphorene.

    图 13  (a)—(e)拉伸形变量为2%—10%的纯黑磷烯(BP)以及黑磷烯吸附Si原子体系(BP-Si)态密度结构; (f)黑磷烯带隙变化曲线

    Fig. 13.  (a)−(e) The DOS of black phosphorene (BP) and Si adsorbed on black phosphorene (BP-Si) with 2%−10% tensile deformation; (f) band gap curves of black phosphorene.

    图 14  电场作用下纯黑磷烯与黑磷烯吸附Si原子体系 (a), (b)能带结构, 其中蓝色虚线代表黑磷及黑磷烯吸附体系的能带结构, 黑色实现代表电场作用下黑磷烯及其吸附体系的能带结构; (c) DOS结构

    Fig. 14.  Si adsorbed on black phosphorene system and pure black phosphorene under electric field: (a), (b) Band structure, the blue dotted line represents the energy band structure of black phosphorus and black phosphorene adsorption system, and the black realization represents the energy band structure of black phosphorus and its adsorption system under the action of electric field; (c) DOS.

    图 15  (a)—(e)电场作用下拉伸形变量为2%—10%的黑磷烯能带结构; (f)—(j)电场作用下拉伸形变量为2%—10%的黑磷烯吸附Si原子体系能带结构

    Fig. 15.  (a)−(e) Band structure of black phosphorene with 2%−10% tensile deformation under electric field; (f)−(j) band structure of Si adsorbed on black phosphorene system with 2%−10% tensile deformation under electric field.

    图 16  (a)—(e)电场作用下拉伸形变量为2%—10%的黑磷烯吸附Si原子体系能带结构; (f)黑磷烯带隙变化曲线

    Fig. 16.  (a)−(e) Band structure of Si adsorbed on black phosphorene system with 2%−10% tensile deformation under the action of electric field; (f) band gap curves of black phosphorene.

    表 1  吸附原子所在原子环的P—P键键长与Si原子吸附高度

    Table 1.  Relationship between P—P bond length and Si adsorption height.

    吸附位P—Si/P—P(1)/ÅP—P(2)/ÅP—P(3)/ÅP—P(4)/Åd0
    T2.2832.2142.2062.2062.2071.138
    B2.2362.2562.1862.2362.2121.880
    H2.3122.2212.2002.2042.2301.160
    下载: 导出CSV

    表 2  P原子间键长及键级

    Table 2.  Bond length and bond order between P atoms.

    P4—P10, P34—P4P10—P16, P28—P34P16—P22, P22—P28本征P—PP16, 28—SiP20—Si
    键长/Å2.1622.4972.2102.2102.3312.312
    键级0.481.000.450.470.420.33
    下载: 导出CSV

    表 3  P原子的Mulliken电荷布居数

    Table 3.  Mulliken charge population of P atom.

    原子编号P10, 34P16, 28P11, 35P8, 12, 13, 25, 32, 36P1, 7, 9, 17, 24, 29, 31, 33P2, 15, 18, 19, 23, 27, 30P3, 4, 14, 26P5, 22P6P20P21Si
    Total/e5.105.065.045.025.014.994.984.974.964.944.933.78
    Charge/e–0.10–0.06–0.04–0.02–0.010.010.020.030.040.060.070.22
    下载: 导出CSV

    表 4  拉伸形变作用下纯黑磷烯单原子结合能和黑磷烯吸附Si原子吸附能

    Table 4.  Monoatomic binding energy of black phosphorene and adsorption energy of Si adsorbed on black phosphorene under tensile deformation.

    形变量/%0246810
    结合能/eV–5.774–5.755–5.719–5.703–5.701–5.688
    吸附能/eV3.9703.9143.8643.6833.6523.657
    下载: 导出CSV

    表 5  电场与拉伸共作用下纯黑磷烯单原子结合能和黑磷烯吸附Si原子吸附能

    Table 5.  Single atom binding energy of black phosphorene and adsorption energy of Si adsorbed on black phosphorene system under the action of electric field and tensile.

    形变量/%0246810
    结合能/eV–2.507–2.485–2.457–2.439–2.433–2.421
    吸附能/eV3.4613.4203.3663.2543.2143.210
    下载: 导出CSV
  • [1]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [2]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [3]

    James B, Matin A, Joy C, Chen Y Z, Ho A G, Valerio A, Raj S V, Yang G, Crozier K B, Yu-Lun C 2018 Nat. Photonics 12 601Google Scholar

    [4]

    Avsar A, Tan J Y, Kurpas M, Gmitra M, Watanabe K, Taniguchi T, Fabian J, Özyilmaz B 2017 Nat. Phys. 13 888Google Scholar

    [5]

    Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H, Zhang Y 2016 Nat. Nanotechnol. 11 593Google Scholar

    [6]

    Chen X, Lu X, Deng B, Sinai O, Shao Y, Li C, Yuan S, Tran V, Watanabe K, Taniguchi T, Naveh D, Yang L, Xia F 2017 Nat. Commun. 8 1672Google Scholar

    [7]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247Google Scholar

    [8]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [9]

    Deng B, Tran V, Xie Y, Hao J, Cheng L, Guo Q, Wang X, He T, Koester S J, Han W 2017 Nat. Commun. 8 14474Google Scholar

    [10]

    Buscema M, Groenendijk D J, Steele G A, Zant H, Castellanos-Gomez A 2014 Nat. Commun. 5 4651Google Scholar

    [11]

    Feng X, Huang X, Chen L, Tan W C, Wang L, Ang K W 2018 Adv. Funct. Mater. 28 1801524Google Scholar

    [12]

    Huang L, Dong B, Guo X, Chang Y, Chen N, Huang X, Liao W, Zhu C, Wang H, Lee C, Ang K W 2018 ACS Nano 13 913

    [13]

    Castellanos-Gomez A 2015 J. Phys. Chem. Lett. 6 4280Google Scholar

    [14]

    Rajabali M, Esfandiari M, Rajabali S, Vakili-Tabatabaei M, Mohajerzadeh S, Mohajerzadeh S 2020 Adv. Mater. Interfaces 7 2000774Google Scholar

    [15]

    Rajabali M, Mohajerzadeh S 2019 Phys. Status Solidi RRL 13 1900197Google Scholar

    [16]

    Xu Y, Shi X, Zhang Y, Zhang H, Zhang K, Huang Z, Xu X, Guo J, Zhang H, Sun L, Zheng Z, Pan A, Zhang K 2020 Nat. Commun. 11 1330Google Scholar

    [17]

    Soo-Yeon C, Youhan L, Hyeong-Jun K, Hyunju J, Jong-Seon K 2016 Adv. Mater. 28 7020Google Scholar

    [18]

    Tyagi D, Wang H, Huang W, Hu L, Tang Y, Guo Z, Ouyang Z, Zhang H 2020 Nanoscale 12 3535Google Scholar

    [19]

    Prajapati Y K, Pal S, Verma A, Saini J P 2019 IET Optoelectron. 13 196Google Scholar

    [20]

    Kumar R, Pal S, Verma A, Prajapati Y K, Saini J P 2020 Superlattices Microstruct. 145 106591Google Scholar

    [21]

    Kumar P, Gupta M, Singh K 2020 Silicon 12 2809Google Scholar

    [22]

    Hui W, Yi C 2012 Nano Today 7 414Google Scholar

    [23]

    Obrovac M N, Christensen L 2004 Electrochem. Solid-State Lett. 7 A93Google Scholar

    [24]

    Pinson M B, Bazant M Z 2012 J. Electrochem. Soc. 160 A243Google Scholar

    [25]

    Carvalho A, Neto A 2015 ACS Central Sci. 1 289Google Scholar

    [26]

    Carvalho A, Wang M, Zhu X, Rodin A S, Su H, Neto A C 2016 Nat. Rev. Mater. 1 16061Google Scholar

    [27]

    Zhang C, Yu M, Anderson G, Dharmasena R R, Sumanasekera G 2017 Nanotechnology 28 075401Google Scholar

    [28]

    Sun J, Lee H, Pasta M, Yuan H, Zheng G, Sun Y, Li Y, Cui Y 2015 Nat. Nanotechnol. 10 980Google Scholar

    [29]

    Park C M, Sohn H J 2007 Adv. Mater. 19 2465Google Scholar

    [30]

    Arie A A, Lee J K 2013 Materials Science Forum 737 80Google Scholar

    [31]

    Domi Y, Usui H, Shimizu M, Kakimoto Y, Sakaguchi H 2016 ACS Appl. Mater. Interfaces 8 7125Google Scholar

    [32]

    Kim J S, Choi W, Byun D, Lee J K 2012 Solid State Ionics 212 43Google Scholar

    [33]

    Song J O, Shim H T, Byun D J, Lee J K 2007 Solid State Phenom. 124-126 1063Google Scholar

    [34]

    Yan C, Liu Q, Gao J, Yang Z, He D 2017 Beilstein J. Nanotechnol. 8 222Google Scholar

    [35]

    彭勃, 徐耀林, Fokko M 2017 物理化学学报 33 2127Google Scholar

    Peng B, Xu Y, Fokko M 2017 Acta Phys.-Chim. Sin. 33 2127Google Scholar

    [36]

    Shojaei F, Hahn J R, Kang H S 2016 J. Phys. Chem. C 120 17106Google Scholar

    [37]

    Olmedo E M, Garza C, Fomine S 2019 J. Mol. Model. 25 292Google Scholar

    [38]

    Segall M, Lindan P, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [39]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 77 3865Google Scholar

    [40]

    Heyd J, Scuseria G E 2003 J. Chem. Phys. 118 8207Google Scholar

    [41]

    Luo Y, Ren C, Wang S, Li S, Zhang P, Yu J, Sun M, Sun Z, Tang W 2018 Nanoscale Res. Lett. 13 282Google Scholar

    [42]

    曾祥明, 鄢慧君, 欧阳楚英 2012 物理学报 61 247101Google Scholar

    Zeng X M, Yan H J, Ouyang C Y 2012 Acta Phys. Sin. 61 247101Google Scholar

    [43]

    Mu G Y, Liu G L, Zhang G Y 2020 Int. J. Mod. Phys. B 34 2050191Google Scholar

    [44]

    Du Y, Ouyang C, Shi S, Lei M 2010 J. Appl. Phys. 107 0937181Google Scholar

    [45]

    Ge X, Zhou X H, Ye X, Chen X S 2020 Chem. Phys. Lett. 740 137075Google Scholar

    [46]

    Durajski A P, Gruszka K M, Niegodajew P 2020 Appl. Surf. Sci. 532 147377Google Scholar

    [47]

    El-Hachimi A G, Oubram O, Sadoqi M 2020 Superlattices Microstruct. 146 106673Google Scholar

    [48]

    Xu Y, Liu G, Xing S, Zhao G, Yang J 2020 J. Mater. Chem. C 8 14902Google Scholar

    [49]

    Zhou Y, Zhang M, Guo Z Miao L 2017 Mater. Horiz. 4 997Google Scholar

    [50]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [51]

    Hou X H, Deng Z C, Zhang K 2017 Physica E 88 252Google Scholar

    [52]

    Ferrari A C, Meyer J C, Scardaci V 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [53]

    Wang J X, Wang Y, Liu G L, Wei L, Zhang G Y 2020 Physica B 578 411755Google Scholar

    [54]

    陈献, 程梅娟, 吴顺情, 朱梓忠 2017 物理学报 66 107102Google Scholar

    Chen X, Cheng M J, Wu S Q, Zhu Z Z 2017 Acta Phys. Sin. 66 107102Google Scholar

    [55]

    Sabzyan H, Sadeghpour N 2016 Z. Naturforsch. , A:Phys. Sci. 72 1Google Scholar

    [56]

    张国英, 焦兴强, 刘业舒, 张安国, 孟春雪 2020 物理学报 69 237101

    Zhang G Y, Jiao X Q, Liu Y S, Zhang A G, Meng C X 2020 Acta Phys. Sin. 69 237101

    [57]

    Tran V, Soklaski R, Liang Y, Yang L 2014 Phys. Rev. B 89 235319Google Scholar

    [58]

    Rodin A S, Carvalho A, Neto A 2014 Phys. Rev. Lett. 112 176801Google Scholar

    [59]

    Gazzari S, Wrighton-Araneda K, Cortés-Arriagada D 2020 Surf. Interfaces 21 100786Google Scholar

    [60]

    Carmel S, Subramanian S, Rathinam R, Bhattacharyya A 2020 J. Appl. Phys. 127 094303Google Scholar

    [61]

    Cakır D, Sahin H, Peeters F M 2014 Phys. Rev. B 90 205421Google Scholar

    [62]

    Xie Z, Hui L, Wang J, Zhu G, Chen Z, Li C 2018 Comput. Mater. Sci. 144 304Google Scholar

    [63]

    Yan L, Yang S, Li J 2014 J. Phys. Chem. C 118 23970Google Scholar

    [64]

    Yu W Z, Yan J A, Gao S P 2015 Nanoscale Res. Lett. 10 351Google Scholar

    [65]

    Lü H Y, Lu W J, Shao D F, Sun Y P 2014 Phys. Rev. B 90 085433Google Scholar

    [66]

    Fei R, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [67]

    Kumar P, Bhadoria B S, Kumar S, Bhowmick S, Chauhan Y S, Agarwal A 2016 Phys. Rev. B 93 195428Google Scholar

    [68]

    Peng X, Wei Q, Copple A 2014 Phys. Rev. 90 0854021Google Scholar

    [69]

    Karki B, Freelon B, Rajapakse M, Musa R, Riyadh S, Morris B, Abu U, Yu M, Sumanasekera G, Jasinski J B 2020 Nanotechnology 31 425707Google Scholar

    [70]

    Li Y, Hu Z, Lin S, Lai S K, Wei J, Shu P L 2017 Adv. Funct. Mater. 27 1600986Google Scholar

    [71]

    Luis V G, Riccardo F, Andres C G 2019 Nanoscale 11 12080Google Scholar

    [72]

    Liang S, Hasan M, Seo J H 2019 Nanomaterials 9 566Google Scholar

    [73]

    Singh V, Joung D, Lei Z, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178Google Scholar

    [74]

    Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G 2011 ACS Nano 5 3645Google Scholar

    [75]

    Tang H M, Gao S P 2019 Comput. Mater. Sci. ence 158 88Google Scholar

    [76]

    杨兆曜2017 硕士学位论文 (无锡: 江南大学)

    Yang Z Y 2017 M. D. Thesis (Wuxi: Jiangnan University) (in Chinese)

    [77]

    Jiang J W, Park H S 2014 Nat. Commun. 5 4727Google Scholar

  • [1] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [2] 刘佳文, 姚若河, 刘玉荣, 耿魁伟. 一个圆柱形双栅场效应晶体管的物理模型. 物理学报, 2021, 70(15): 157302. doi: 10.7498/aps.70.20202156
    [3] 姚佳烽, 胡松佩, 杨璐, 吴阳, 韩伟, 刘凯. 基于生物阻抗谱的舌体肿瘤组织识别方法. 物理学报, 2021, 70(15): 158704. doi: 10.7498/aps.70.20210297
    [4] 姚佳烽, 万建芬, 杨璐, 刘凯, 陈柏, 吴洪涛. 基于生物阻抗谱的细胞电学特性研究. 物理学报, 2020, 69(16): 163301. doi: 10.7498/aps.69.20200601
    [5] 张国英, 焦兴强, 刘业舒, 张安国, 孟春雪. 缺陷与掺杂共存的黑磷烯甲醛传感行为的电子理论. 物理学报, 2020, 69(23): 237101. doi: 10.7498/aps.69.20200990
    [6] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [7] 刘贵立, 杨忠华. 变形及电场作用对石墨烯电学特性影响的第一性原理计算. 物理学报, 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [8] 范达志, 刘贵立, 卫琳. 扭转形变对石墨烯吸附O原子电学和光学性质影响的电子理论研究. 物理学报, 2017, 66(24): 246301. doi: 10.7498/aps.66.246301
    [9] 张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明. 石墨烯纳米带的制备与电学特性调控. 物理学报, 2017, 66(21): 218103. doi: 10.7498/aps.66.218103
    [10] 安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华. 外电场作用下ZnO分子的结构特性研究. 物理学报, 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [11] 赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩. 碲化镉薄膜太阳能电池电学特性参数分析. 物理学报, 2013, 62(18): 188801. doi: 10.7498/aps.62.188801
    [12] 魏晓林, 陈元平, 王如志, 钟建新. 含孔缺陷石墨烯纳米条带的电学特性研究. 物理学报, 2013, 62(5): 057101. doi: 10.7498/aps.62.057101
    [13] 高勇, 马丽, 张如亮, 王冬芳. n,p柱宽度对超结SiGe功率二极管电学特性的影响. 物理学报, 2011, 60(4): 047303. doi: 10.7498/aps.60.047303
    [14] 罗振飞, 吴志明, 许向东, 王涛, 蒋亚东. 纳米VOx薄膜在空气中的电学特性退化研究. 物理学报, 2011, 60(6): 067302. doi: 10.7498/aps.60.067302
    [15] 徐国亮, 夏要争, 刘雪峰, 张现周, 刘玉芳. 外电场作用下TiO光激发特性研究. 物理学报, 2010, 59(11): 7762-7768. doi: 10.7498/aps.59.7762
    [16] 韩文鹏, 刘红. 拉伸形变下BC3纳米管的能带结构. 物理学报, 2010, 59(6): 4194-4201. doi: 10.7498/aps.59.4194
    [17] 黄多辉, 王藩侯, 闵军, 朱正和. 外电场作用下MgO分子的特性研究. 物理学报, 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [18] 韦勇, 童国平. 拉伸作用对单层石墨片电子能隙的影响. 物理学报, 2009, 58(3): 1931-1935. doi: 10.7498/aps.58.1931
    [19] 邱东江, 王 俊, 丁扣宝, 施红军, 郏 寅. 退火对Mn和N共掺杂的Zn0.88Mn0.12O:N薄膜特性的影响. 物理学报, 2008, 57(8): 5249-5255. doi: 10.7498/aps.57.5249
    [20] 徐国亮, 刘玉芳, 孙金锋, 张现周, 朱正和. 外电场作用下SiO电子结构特性研究. 物理学报, 2007, 56(10): 5704-5708. doi: 10.7498/aps.56.5704
计量
  • 文章访问数:  2949
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-27
  • 修回日期:  2021-07-01
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回