搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双阴极X射线条纹相机变像管

李晋 杨品 杨志文 张兴 刘慎业 董建军 杨正华 任宽 李颖洁 张璐 胡昕

引用本文:
Citation:

双阴极X射线条纹相机变像管

李晋, 杨品, 杨志文, 张兴, 刘慎业, 董建军, 杨正华, 任宽, 李颖洁, 张璐, 胡昕

X-ray streak camera tube with two photocathodes

Li Jin, Yang Pin, Yang Zhi-Wen, Zhang Xing, Liu Shen-Ye, Dong Jian-Jun, Yang Zheng-Hua, Ren Kuan, Li Ying-Jie, Zhang Lu, Hu Xin
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为解决基于X光条纹相机技术的时间分辨光谱诊断系统存在测谱范围窄、谱分辨较差的问题, 采用双通道电四极透镜在空间方向聚焦电子和平板电极在时间方向压缩电子的方法, 研制出一种双通道条纹相机扫描变像管, 这种变像管可同时对两条阴极发射电子束进行聚焦扫描偏转, 能大幅度提升变像管有效阴极长度, 从而提升时间分辨光谱诊断系统的测谱范围和谱分辨. 实测结果表明, 研制的变像管有效阴极长度达到44 mm, 空间分辨优于15 lp/mm , 偏转灵敏度优于40 mm/kV. 进一步优化变像管结构和采用高灵敏度图像记录系统以去除像增强器, 可将变像管有效阴极提升到50 mm, 空间分辨提升到25 lp/mm.
    The time-resolved X-ray spectroscopy measurement system based on X-ray streak camera technology is indispensable diagnostic equipment in the study of laser inertial fusion research and high-energy-density physics. However, limited by the effective photocathode length of the X-ray streak tube, the time-resolved spectral measurement system usually used has the shortcomings of narrow spectrum range and poor spectral resolution.In order to overcome the shortcomings, a novel dual-channel streak tube is developed, which consists of a photocathode, a prefocusing electrode group in temporal direction, an electric quadrupole lens electrode group, a main focusing electrode group in temporal direction, a deflector plate, and a phosphor screen. The photocathode has two slits. When X-rays are incident, two electron beams can be emitted simultaneously. The electric quadrupole lens electrode group is composed of 8 arc electrodes. Two electric quadrupole lenses are formed by the 8 arc electrodes in the spatial direction. Two electron beams emitted from the cathode of the streak tube are first accelerated and prefocused by the prefocusing electrode group in the time direction, and then compressed by the main focusing electrode group in the time direction. In the spatial direction, two electron beams are focused by the two electric quadrupole lenses independently. This novel streak tube structure can focus two electron beams at the same time, thereby increasing the effective photocathode length and maintaining the compact structure of streak tube without increasing the aberration.The cathode voltage of the designed streak tube is –12 kV, the distance from cathode to grid is 5 mm, and the cathode-grid field strength is 2.4 kV/mm. The cathode is divided into two sections, the spacing between sections is about 13 mm, the length of each section is more than 20 mm, the magnification of the image converter tube is about 1.56 times, the distance between the cathode and the phosphor screen is 300 mm, and the longest size along the cathode direction is 90 mm. The test results of the performance of the streak tube show that the actual effective cathode length of the developed tube reaches 44 mm, the spatial resolution is better than 15 lp/mm, and the deflection sensitivity is better than 40 mm/kV. The effective cathode and spatial resolution of the tube can be increased to 50 mm and 25 lp/mm by further optimizing the structure of the tube and removing the image intensifier with a high sensitivity image recording system, respectively.
      通信作者: 胡昕, huxin88@sina.com
    • 基金项目: 中国工程物理研究院院长基金(批准号: YZJJLX2018011, YZJJLX2019011)资助的课题.
      Corresponding author: Hu Xin, huxin88@sina.com
    • Funds: Project supported by the Presidential Foundation of China Academy of Engineering Physics (Grant Nos. YZJJLX2018011, YZJJLX2019011)
    [1]

    Schirmann D, Mens A, Sauneuf R, et al. 1992 SPIE 1757 139128Google Scholar

    [2]

    Kimbrough J R, Bell P M, Christianson G B, Lee F D, Kalantar D H, Perry T S, Sewall N R, Wootton A J 2001 Rev. Sci. Instrum. 72 748Google Scholar

    [3]

    Pitre V, Magnan S, Kieffera J C, Dorchies F, Sa1 in F, Goulmy C, Rebuffie J C 2004 SPIE 5194 503581Google Scholar

    [4]

    Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102Google Scholar

    [5]

    Lihong N, Qinlao Y, Hanben N, Hua L, Junlan Z 2008 Rev. Sci. Instrum. 79 023103Google Scholar

    [6]

    胡昕, 刘慎业, 丁永坤, 杨勤劳, 田进寿, 何小安 2009 光学学报 29 2871Google Scholar

    Hu X, Liu S Y, Ding Y K, Yang Q L, Tian J S, He X A 2009 Acta Opt. Sin. 29 2871Google Scholar

    [7]

    Opachich Y P, Kalantar D H, MacPhee A G, et al. 2012 Rev. Sci. Instrum. 83 125105Google Scholar

    [8]

    李晋, 胡昕, 杨品, 杨志文, 陈韬, 刘慎业 2013 强激光与粒子束 25 2616

    Li J, Hu X, Yang P, Yang Z W, Chen T, Liu S Y 2013 High Power Laser Part. Beams 25 2616

    [9]

    朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 物理学报 64 098501Google Scholar

    Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501Google Scholar

    [10]

    MacPhee A G, Dymoke-Bradshaw A K L, Hares J D, Hassett J, et al. 2016 Rev. Sci. Instrum. 87 11E202Google Scholar

    [11]

    李晋, 杨志文, 胡昕, 张兴, 王峰 2021 红外与激光工程 50 20210402Google Scholar

    Li J, Yang Z W, Hu X, Zhang X, Wang F 2021 Infrared Laser Eng. 50 20210402Google Scholar

    [12]

    Eagleton R T, James S F 2004 Rev. Sci. Instrum. 75 3969Google Scholar

    [13]

    胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 物理学报 56 1447Google Scholar

    Hu X, Jiang S E, Cui Y L, Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang H Q 2007 Acta Phys. Sin. 56 1447Google Scholar

    [14]

    Cone K V, Dunn J, Schneider M B, Baldis H A, Brown G V, Emig J, James D L, May M J, Park J, Shepherd R, Widmann K 2010 Rev. Sci. Instrum. 81 10E318Google Scholar

    [15]

    Millecchia M, Regan S P, Bahr R E, Romanofsky M, Sorce C 2012 Rev. Sci. Instrum. 83 10E107Google Scholar

    [16]

    Nilson P M, Ehrne F, Mileham C, et al. 2016 Rev. Sci. Instrum. 87 11D504Google Scholar

    [17]

    Stillman C R, Nilson P M, Ivancic S T, Mileham C, Begishev I A, Junquist R K, Nelson D J, Froula D H 2016 Rev. Sci. Instrum. 87 11E302Google Scholar

    [18]

    Benstead J, Moore A S, Ahmed M F, et al. 2016 Rev. Sci. Instrum. 87 055110Google Scholar

    [19]

    Hill K W, Bitter M, Delgado-Aparicio L, et al. 2016 Rev. Sci. Instrum. 87 11E344Google Scholar

    [20]

    Olson R E, Rochau G A, Landen O L, Leeper R J 2011 Phys. Plasmas 18 032706Google Scholar

    [21]

    Chen B L, Yang Z H, Wei M X, et al. 2014 Phys. Plasmas 21 122705Google Scholar

    [22]

    Stillman C R, Nilson P M, Ivancic S T, Golovkin I E, Mileham C, Begishev I A, Froula D H 2017 Phys. Rev. E 95 063204Google Scholar

    [23]

    Pikuz S A, Shelkovenko T A, Chandler K M, Mitchell M D, Hammer D A, Skobelev I Y, Shlyaptseva A S, Hansen S B 2004 Rev. Sci. Instrum. 10 3666Google Scholar

  • 图 1  双阴极变像管结构 1-光阴极, 2-平板电极I, 3-平板电极II, 4-平板电极III, 5-电四极透镜聚焦组, 6-平板电极IV, 7-平板电极V, 8-平板电极VI, 9-偏转板, 10-荧光屏

    Fig. 1.  Structure of dual-cathode streak tube: 1-photocathode, 2-plate electrode I, 3-plate electrode II, 4-plate electrode III, 5-quadrupole lens, 6-plate electrode IV, 7-plate electrode V, 8-plate electrode VI, 9-deflector, 10-screen.

    图 2  电四极透镜结构

    Fig. 2.  Structure of quadrupole lens.

    图 3  阴极成像效果(蓝色为阴极发射面电子分布, 红色为像面电子分布)

    Fig. 3.  Cathode imaging results (Blue is electron distribution on cathode emission plane, red is electron distribution on image plane).

    图 4  变像管结构 (a) 内部设计结构; (b) 外部结构; (c) 内部实际制作结构

    Fig. 4.  Structure of the streak tube: (a) Internal design structure; (b) external structure; (c) actual production structure.

    图 5  变像管性能测试器件排布图

    Fig. 5.  Layout of test devices for streak tube performance.

    图 6  耦合像增强器时的空间分辨率测试图像

    Fig. 6.  Spatial resolution test image coupled with image intensifier.

    图 7  无像增强器时的空间分辨率测试图像

    Fig. 7.  Spatial resolution test image without image intensifier.

    图 8  偏转灵敏度测试图像

    Fig. 8.  Deflection sensitivity test image.

  • [1]

    Schirmann D, Mens A, Sauneuf R, et al. 1992 SPIE 1757 139128Google Scholar

    [2]

    Kimbrough J R, Bell P M, Christianson G B, Lee F D, Kalantar D H, Perry T S, Sewall N R, Wootton A J 2001 Rev. Sci. Instrum. 72 748Google Scholar

    [3]

    Pitre V, Magnan S, Kieffera J C, Dorchies F, Sa1 in F, Goulmy C, Rebuffie J C 2004 SPIE 5194 503581Google Scholar

    [4]

    Feng J, Shin H J, Nasiatka J R, Wan W, Young A T, Huang G, Comin A, Byrd J, Padmore H A 2007 Appl. Phys. Lett. 91 134102Google Scholar

    [5]

    Lihong N, Qinlao Y, Hanben N, Hua L, Junlan Z 2008 Rev. Sci. Instrum. 79 023103Google Scholar

    [6]

    胡昕, 刘慎业, 丁永坤, 杨勤劳, 田进寿, 何小安 2009 光学学报 29 2871Google Scholar

    Hu X, Liu S Y, Ding Y K, Yang Q L, Tian J S, He X A 2009 Acta Opt. Sin. 29 2871Google Scholar

    [7]

    Opachich Y P, Kalantar D H, MacPhee A G, et al. 2012 Rev. Sci. Instrum. 83 125105Google Scholar

    [8]

    李晋, 胡昕, 杨品, 杨志文, 陈韬, 刘慎业 2013 强激光与粒子束 25 2616

    Li J, Hu X, Yang P, Yang Z W, Chen T, Liu S Y 2013 High Power Laser Part. Beams 25 2616

    [9]

    朱敏, 田进寿, 温文龙, 王俊锋, 曹希斌, 卢裕, 徐向晏, 赛小锋, 刘虎林, 王兴, 李伟华 2015 物理学报 64 098501Google Scholar

    Zhu M, Tian J S, Wen W L, Wang J F, Cao X B, Lu Y, Xu X Y, Sai X F, Liu H L, Wang X, Li W H 2015 Acta Phys. Sin. 64 098501Google Scholar

    [10]

    MacPhee A G, Dymoke-Bradshaw A K L, Hares J D, Hassett J, et al. 2016 Rev. Sci. Instrum. 87 11E202Google Scholar

    [11]

    李晋, 杨志文, 胡昕, 张兴, 王峰 2021 红外与激光工程 50 20210402Google Scholar

    Li J, Yang Z W, Hu X, Zhang X, Wang F 2021 Infrared Laser Eng. 50 20210402Google Scholar

    [12]

    Eagleton R T, James S F 2004 Rev. Sci. Instrum. 75 3969Google Scholar

    [13]

    胡昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全 2007 物理学报 56 1447Google Scholar

    Hu X, Jiang S E, Cui Y L, Huang Y X, Ding Y K, Liu Z L, Yi R Q, Li C G, Zhang J H, Zhang H Q 2007 Acta Phys. Sin. 56 1447Google Scholar

    [14]

    Cone K V, Dunn J, Schneider M B, Baldis H A, Brown G V, Emig J, James D L, May M J, Park J, Shepherd R, Widmann K 2010 Rev. Sci. Instrum. 81 10E318Google Scholar

    [15]

    Millecchia M, Regan S P, Bahr R E, Romanofsky M, Sorce C 2012 Rev. Sci. Instrum. 83 10E107Google Scholar

    [16]

    Nilson P M, Ehrne F, Mileham C, et al. 2016 Rev. Sci. Instrum. 87 11D504Google Scholar

    [17]

    Stillman C R, Nilson P M, Ivancic S T, Mileham C, Begishev I A, Junquist R K, Nelson D J, Froula D H 2016 Rev. Sci. Instrum. 87 11E302Google Scholar

    [18]

    Benstead J, Moore A S, Ahmed M F, et al. 2016 Rev. Sci. Instrum. 87 055110Google Scholar

    [19]

    Hill K W, Bitter M, Delgado-Aparicio L, et al. 2016 Rev. Sci. Instrum. 87 11E344Google Scholar

    [20]

    Olson R E, Rochau G A, Landen O L, Leeper R J 2011 Phys. Plasmas 18 032706Google Scholar

    [21]

    Chen B L, Yang Z H, Wei M X, et al. 2014 Phys. Plasmas 21 122705Google Scholar

    [22]

    Stillman C R, Nilson P M, Ivancic S T, Golovkin I E, Mileham C, Begishev I A, Froula D H 2017 Phys. Rev. E 95 063204Google Scholar

    [23]

    Pikuz S A, Shelkovenko T A, Chandler K M, Mitchell M D, Hammer D A, Skobelev I Y, Shlyaptseva A S, Hansen S B 2004 Rev. Sci. Instrum. 10 3666Google Scholar

  • [1] 田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿. 基于各向异性及后加速技术的百飞秒时间分辨条纹管设计. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [2] 陈子涵, 宋梦齐, 陈恒, 王志立. 双三角形相位光栅X射线干涉仪的条纹可见度. 物理学报, 2023, 72(14): 148701. doi: 10.7498/aps.72.20230461
    [3] 田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿. 基于各向异性及后加速技术的百飞秒时间分辨条纹管设计. 物理学报, 2023, 72(24): 248502. doi: 10.7498/aps.72.20231382
    [4] 何小安, 杨家敏, 黎宇坤, 李晋, 熊刚. 软X射线条纹相机CsI光阴极响应灵敏度的理论计算. 物理学报, 2023, 72(24): 245203. doi: 10.7498/aps.72.20231043
    [5] 邓文娟, 朱斌, 王壮飞, 彭新村, 邹继军. 变掺杂变组分AlxGa1–xAs/GaAs反射式光电阴极分辨力特性. 物理学报, 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [6] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量. 物理学报, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [7] 袁铮, 董建军, 李晋, 陈韬, 张文海, 曹柱荣, 杨志文, 王静, 赵阳, 刘慎业, 杨家敏, 江少恩. 分幅变像管动态空间分辨率的标定. 物理学报, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [8] 惠丹丹, 田进寿, 卢裕, 王俊锋, 温文龙, 梁玲亮, 陈琳. 条纹变像管时间畸变的分析. 物理学报, 2016, 65(15): 158502. doi: 10.7498/aps.65.158502
    [9] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏. 可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究. 物理学报, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [10] 邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康. 变组分AlGaAs/GaAs透射式光电阴极分辨力特性分析. 物理学报, 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [11] 刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴. 行波偏转器前置短磁聚焦条纹变像管理论设计与实验研究. 物理学报, 2014, 63(5): 058501. doi: 10.7498/aps.63.058501
    [12] 胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国. 二极管激光腔衰荡光谱测量大气NO3自由基. 物理学报, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [13] 陈火耀, 刘正坤, 王庆博, 易涛, 杨国洪, 洪义麟, 付绍军. 软X射线全息平焦场光栅的条纹弯曲现象及其对光谱分辨率的影响. 物理学报, 2014, 63(23): 234203. doi: 10.7498/aps.63.234203
    [14] 董建军, 曹柱荣, 杨正华, 陈伯伦, 黄天暄, 邓博, 刘慎业, 江少恩, 丁永坤, 伊圣振, 穆宝忠. 辐射驱动内爆流线实验测量. 物理学报, 2012, 61(15): 155208. doi: 10.7498/aps.61.155208
    [15] 曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启. 软X射线条纹相机透射式Au与CsI阴极谱响应灵敏度标定. 物理学报, 2012, 61(15): 155209. doi: 10.7498/aps.61.155209
    [16] 袁永腾, 郝轶聃, 赵宗清, 侯立飞, 缪文勇. 空间电荷效应对X射线条纹相机动态范围影响的研究. 物理学报, 2010, 59(10): 6963-6968. doi: 10.7498/aps.59.6963
    [17] 胡 昕, 江少恩, 崔延莉, 黄翼翔, 丁永坤, 刘忠礼, 易荣清, 李朝光, 张景和, 张华全. 一种时间分辨三通道软X射线光谱仪. 物理学报, 2007, 56(3): 1447-1451. doi: 10.7498/aps.56.1447
    [18] 谢旭东, 王 逍, 朱启华, 曾小明, 王凤蕊, 黄小军, 周凯南, 王 方, 蒋东镔, 黄 征, 孙 立, 刘 华, 王晓东, 邓 武, 郭 仪, 张小民. 光谱分辨条纹相机测量高能啁啾脉冲特性. 物理学报, 2007, 56(11): 6463-6467. doi: 10.7498/aps.56.6463
    [19] 孙可煦, 江少恩, 易荣清, 崔延莉, 丁永坤, 刘慎业. X射线二极管时间特性研究. 物理学报, 2006, 55(1): 68-75. doi: 10.7498/aps.55.68
    [20] 刘立新, 屈军乐, 林子扬, 陈丹妮, 许改霞, 胡 涛, 郭宝平, 牛憨笨. 双光子激发时间分辨荧光光谱测量技术. 物理学报, 2006, 55(12): 6281-6286. doi: 10.7498/aps.55.6281
计量
  • 文章访问数:  4193
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-07-17
  • 上网日期:  2022-11-22
  • 刊出日期:  2022-12-05

/

返回文章
返回