搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三聚化非厄密晶格中具有趋肤效应的拓扑边缘态

许楠 张岩

引用本文:
Citation:

三聚化非厄密晶格中具有趋肤效应的拓扑边缘态

许楠, 张岩

Topological edge states with skin effect in a trimerized non-Hermitian lattice

Xu Nan, Zhang Yan
PDF
HTML
导出引用
  • 近年来, 探索新的拓扑量子结构、深入分析各种多聚化拓扑晶格中的新奇物理性质已经成为热点. 并且, 多聚化拓扑模型在量子光学等领域的研究也愈发深入, 拥有广阔的发展前景. 本文聚焦于研究三聚化非厄密晶格中的新奇拓扑特性. 首先, 若晶胞内最近邻正反向耦合不相等, 三聚化模型中的体态和边缘态出现趋肤效应. 其中, 随着最近邻耦合正反系数差的增大, 拓扑保护的边缘态的宽度和简并度均可被调制, 边缘态数量也会减少. 其次, 当在考虑次近邻耦合的影响时, 随着次近邻耦合系数在适当范围内变化, 系统本征能谱的上下能隙及其中具有趋肤效应的边缘态也会发生不对称的变化. 此外, 当适当改变两种耦合系数, 三聚化非厄密模型的体态和边缘态的局域程度也会随之发生变化.
    In recent years, exploring new topological quantum model structures and in depth analyzing the novel physical properties in various multimerized topological lattices have become a hot topic in the field of quantum optics. Among the different model structures, the multimerized non-Hermitian lattice controlled by different parameters in the future research of topological quantum materials, we believe, can exhibit more meaningful novel topological properties. As one of the most classic topological models, the one-dimensional Aubry-André-Harper (AAH) model has received more and more attention in the study of multimerized lattices. In this paper, we focus on the novel topological properties of a trimerized non-Hermitian lattice, and extend the trimer model structure from a one-dimensional chain to a quasi-one-dimensional zigzag structure. The results show that firstly, if the nearest-neighbor forward coupling coefficient in the unit cell is not equal to the backward coupling coefficient, the chiral inversion symmetry of the system is destroyed. It can be observed that the bulk states and the edge states in the trimerization model will be localized on the same edge of the lattice, and the skin effect will appear in the system. With the increase of the nearest-neighbor coupling coefficient, the width of the edge state changes in which the lower edge state of the imaginary part of the spectrum is narrowed until it disappears. The degree of degeneracy of the system changes, and the number of edge states is reduced from four to two. Remarkably, the generalized bulk-boundary correspondence is shown in certain non-Hermitian topological systems. Secondly, when the trimerization model considers the influence of the next-nearest-neighbor coupling, the numerical results show that the upper and lower energy gaps in the energy spectrum and the edge states in the energy spectrum are asymmetrical as the next-nearest-neighbor coupling coefficient is modulated in an appropriate range. The upper energy gaps and the edge states are narrowed, and the edge states of the lower energy gaps are widened. At the same time, the novel topology features of the system can also be used to achieve the quantitative control of the energy spectrum edge states, and other interesting directions are worth exploring.
      通信作者: 张岩, zhangy345@nenu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11704064)、吉林省科技发展计划项计划(批准号: 20180520205JH)和吉林省教育厅“十三五”科学技术项目(批准号: JJKH20180010KJ)资助的课题.
      Corresponding author: Zhang Yan, zhangy345@nenu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11704064), the Scientific and Technological Development Program of Jilin Province, China (Grant No. 20180520205JH), and the Science Foundation of the Education Department of Jilin Province During the 13th Five-Year Plan Period, China (Grant No. JJKH20180010KJ).
    [1]

    Klitzing K, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Klitzing K 1986 Rev. Mod. Phys. 58 519Google Scholar

    [3]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [4]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [5]

    Raghu S, Haldane F D M 2008 Phys. Rev. A 78 033834Google Scholar

    [6]

    Chang C Z, Zhang J S, Feng X, Xue Q K 2013 Sci. Rep. 340 6129

    [7]

    Goldman N, Budich J C, Zoller P 2016 Nat. Phys. 12 639Google Scholar

    [8]

    孙晓晨, 何程, 卢明辉, 陈延峰 2017 物理学报 22 224203Google Scholar

    Sun X C, He C, Lu M H, Chen Y F 2017 Acta Phys. Sin. 22 224203Google Scholar

    [9]

    张卫锋, 李春艳, 陈险锋, 黄长明, 叶芳伟 2017 物理学报 22 220201Google Scholar

    Zhang W F, Li C Y, Chen X F, Huang C M, Ye F W 2017 Acta Phys. Sin. 22 220201Google Scholar

    [10]

    陈西浩, 王秀娟 2018 物理学报 19 190301Google Scholar

    Chen X H, Wang X J 2018 Acta Phys. Sin. 19 190301Google Scholar

    [11]

    Aubry S, Andreé G, Isr A 1980 Phys. Soc. 322 235

    [12]

    harper P G 1955 Proc. Phys. Soc. London Sect. A 68 874Google Scholar

    [13]

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, Silberberg Y 2009 Phys. Rev. Lett. 103 013901Google Scholar

    [14]

    Biddle J, Wang B, Priour D J, Sarma S D 2009 Phys. Rev. A 80 021603 (R)Google Scholar

    [15]

    Ganeshan S, Sun K, Sarma S D 2013 Phys. Rev. Lett. 110 180403Google Scholar

    [16]

    Hatano N, Nelson D R 1997 Phys. Rev. B 56 8651Google Scholar

    [17]

    Hatano N, Nelson D R 1998 Phys. Rev. B 58 8384Google Scholar

    [18]

    Yurkevich I V, Lerner I V 1999 Phys. Rev. Lett. 82 5080Google Scholar

    [19]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [20]

    Dorey P, Dunning C, Tateo R 2001 J. Phys. A 34 5679Google Scholar

    [21]

    Mostafazadeh A 2002 J. Math. Phys. 43 205Google Scholar

    [22]

    Jones H F 2005 J. Phys. A 38 1741Google Scholar

    [23]

    Klaiman S, Günther U, Moiseyev N 2008 Phys. Rev. Lett. 101 080402Google Scholar

    [24]

    Znojil M 2008 Phys. Rev. D 78 025026Google Scholar

    [25]

    Jin L, Song Z 2009 Phys. Rev. A 80 052107Google Scholar

    [26]

    Rotter I 2009 J. Phys. A: Math. Theor. 42 124206

    [27]

    Moiseyev N 2011 Non-Hermitian Quantum Mechanics (Cambridge: Cambridge University) pp 211—247

    [28]

    Joqlekar Y N, Barnett J L 2011 Phys. Rev. A 84 024103Google Scholar

    [29]

    Longhi S, Valle G D 2012 Phys. Rev. A 85 012112Google Scholar

    [30]

    Longhi S 2013 Phys. Rev. A 88 052102Google Scholar

    [31]

    Longhi S 2016 Phys. Rev. A 94 022102Google Scholar

    [32]

    Jin L, Xin F 2017 Phys. Rev. A 97 012121

    [33]

    Zhu B G, Lü R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar

    [34]

    Xing Y, Qi L, Cao J, Wang D Y, Bai C H, Wang H F, Zhu A D, Zhang S 2017 Phys. Rev. A 96 043810Google Scholar

    [35]

    Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819Google Scholar

    [36]

    Schomerus H, Wiersig J 2014 Phys. Rev. A 90 053819Google Scholar

    [37]

    Cheng Q, Pan Y, Wang Q, Li T, Zhu S 2015 Laser Photonics Rev. 9 392Google Scholar

    [38]

    Longhi S, Gatti D, Della Valle G 2015 Phys. Rev. B 92 094204Google Scholar

    [39]

    Martinez Alvarez V M, Barrios Vargas J E, Foa Torres L E F 2018 Phys. Rev. B 97 121401(R)Google Scholar

    [40]

    Yao S Y, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [41]

    Jin L 2017 Phys. Rev. A 96 032103Google Scholar

  • 图 1  扩展的三聚化非厄密晶格示意图

    Fig. 1.  Schematic of the generalized trimerized non-Hermitian lattice.

    图 2  三聚化非厄密晶格的本征能谱 (a), (c), (e)和(g)分别为$\mu=0, 0.1, 0.15, 0.2$时本征能谱的实部; (b), (d), (f)和(h)分别为$\mu=0, 0.1, 0.15, 0.2$时本征能谱的虚部, 边缘态能带用绿色实线和棕色虚线表示

    Fig. 2.  The eigen-energy spectrum of the trimerized non-Hermitian lattice. (a), (c), (e) and (g) show the real parts of the energy spectrum for $\mu=0, 0.1, 0.15, 0.2$, respectively; (b), (d), (f) and (h) show the imaginary parts of the energy spectrum for $\mu=0, 0.1, 0.15, 0.2$. Green solid lines and brown dash lines represent the energy band of the edge states.

    图 3  系统本征态的光子分布 (a) $\mu=0$; (b) $\mu=0.1$; (c) $\mu=0.2$; (d) $\mu=0.3$

    Fig. 3.  Photon distributions for eigenstates of the system: (a) $\mu=0$; (b) $\mu=0.1$; (c) $\mu=0.2$; (d) $\mu=0.3$.

    图 4  次近邻耦合影响下系统的本征能谱和边缘态的光子分布 (a), (d)和(g)分别为$\nu=0.1, 0.15, 0.2$时本征能谱的实部; (b), (e)和(h)分别为$\nu=0.1, 0.15, 0.2$时上能隙中的边缘态; (c), (f)和(i)分别为$\nu=0.1, 0.15, 0.2$时下能隙的边缘态

    Fig. 4.  The eigen-energy spectrum and photon distributions for edge states of the system under the influence of the next-nearest-neighbor coupling: (a), (d) and (g) show the real parts of the energy spectrum for $\nu=0.1, 0.15, 0.2$; (b), (e) and (h) show the edge states whose energy band are in the upper gaps for $\nu=0.1, 0.15, 0.2$; (c), (f) and (i) show the edge states whose energy bands are in the lower gaps for $\nu=0.1, 0.15, 0.2$.

  • [1]

    Klitzing K, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [2]

    Klitzing K 1986 Rev. Mod. Phys. 58 519Google Scholar

    [3]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [4]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [5]

    Raghu S, Haldane F D M 2008 Phys. Rev. A 78 033834Google Scholar

    [6]

    Chang C Z, Zhang J S, Feng X, Xue Q K 2013 Sci. Rep. 340 6129

    [7]

    Goldman N, Budich J C, Zoller P 2016 Nat. Phys. 12 639Google Scholar

    [8]

    孙晓晨, 何程, 卢明辉, 陈延峰 2017 物理学报 22 224203Google Scholar

    Sun X C, He C, Lu M H, Chen Y F 2017 Acta Phys. Sin. 22 224203Google Scholar

    [9]

    张卫锋, 李春艳, 陈险锋, 黄长明, 叶芳伟 2017 物理学报 22 220201Google Scholar

    Zhang W F, Li C Y, Chen X F, Huang C M, Ye F W 2017 Acta Phys. Sin. 22 220201Google Scholar

    [10]

    陈西浩, 王秀娟 2018 物理学报 19 190301Google Scholar

    Chen X H, Wang X J 2018 Acta Phys. Sin. 19 190301Google Scholar

    [11]

    Aubry S, Andreé G, Isr A 1980 Phys. Soc. 322 235

    [12]

    harper P G 1955 Proc. Phys. Soc. London Sect. A 68 874Google Scholar

    [13]

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, Silberberg Y 2009 Phys. Rev. Lett. 103 013901Google Scholar

    [14]

    Biddle J, Wang B, Priour D J, Sarma S D 2009 Phys. Rev. A 80 021603 (R)Google Scholar

    [15]

    Ganeshan S, Sun K, Sarma S D 2013 Phys. Rev. Lett. 110 180403Google Scholar

    [16]

    Hatano N, Nelson D R 1997 Phys. Rev. B 56 8651Google Scholar

    [17]

    Hatano N, Nelson D R 1998 Phys. Rev. B 58 8384Google Scholar

    [18]

    Yurkevich I V, Lerner I V 1999 Phys. Rev. Lett. 82 5080Google Scholar

    [19]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [20]

    Dorey P, Dunning C, Tateo R 2001 J. Phys. A 34 5679Google Scholar

    [21]

    Mostafazadeh A 2002 J. Math. Phys. 43 205Google Scholar

    [22]

    Jones H F 2005 J. Phys. A 38 1741Google Scholar

    [23]

    Klaiman S, Günther U, Moiseyev N 2008 Phys. Rev. Lett. 101 080402Google Scholar

    [24]

    Znojil M 2008 Phys. Rev. D 78 025026Google Scholar

    [25]

    Jin L, Song Z 2009 Phys. Rev. A 80 052107Google Scholar

    [26]

    Rotter I 2009 J. Phys. A: Math. Theor. 42 124206

    [27]

    Moiseyev N 2011 Non-Hermitian Quantum Mechanics (Cambridge: Cambridge University) pp 211—247

    [28]

    Joqlekar Y N, Barnett J L 2011 Phys. Rev. A 84 024103Google Scholar

    [29]

    Longhi S, Valle G D 2012 Phys. Rev. A 85 012112Google Scholar

    [30]

    Longhi S 2013 Phys. Rev. A 88 052102Google Scholar

    [31]

    Longhi S 2016 Phys. Rev. A 94 022102Google Scholar

    [32]

    Jin L, Xin F 2017 Phys. Rev. A 97 012121

    [33]

    Zhu B G, Lü R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar

    [34]

    Xing Y, Qi L, Cao J, Wang D Y, Bai C H, Wang H F, Zhu A D, Zhang S 2017 Phys. Rev. A 96 043810Google Scholar

    [35]

    Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819Google Scholar

    [36]

    Schomerus H, Wiersig J 2014 Phys. Rev. A 90 053819Google Scholar

    [37]

    Cheng Q, Pan Y, Wang Q, Li T, Zhu S 2015 Laser Photonics Rev. 9 392Google Scholar

    [38]

    Longhi S, Gatti D, Della Valle G 2015 Phys. Rev. B 92 094204Google Scholar

    [39]

    Martinez Alvarez V M, Barrios Vargas J E, Foa Torres L E F 2018 Phys. Rev. B 97 121401(R)Google Scholar

    [40]

    Yao S Y, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [41]

    Jin L 2017 Phys. Rev. A 96 032103Google Scholar

  • [1] 夏群, 邓文基. 体态和边缘态的电导峰. 物理学报, 2022, 71(13): 137301. doi: 10.7498/aps.71.20212424
    [2] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制. 物理学报, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [3] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态. 物理学报, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [4] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构. 物理学报, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [5] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [6] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [7] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [8] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [9] 卢曼昕, 邓文基. 一维二元复式晶格的拓扑不变量与边缘态. 物理学报, 2019, 68(12): 120301. doi: 10.7498/aps.68.20190214
    [10] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展. 物理学报, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [11] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, 2017, 66(22): 220201. doi: 10.7498/aps.66.220201
    [12] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [13] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [14] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [15] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 物理学报, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [16] 丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力. Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应. 物理学报, 2013, 62(16): 167401. doi: 10.7498/aps.62.167401
    [17] 王怀强, 杨运友, 鞠艳, 盛利, 邢定钰. 铁磁绝缘体间的极薄Bi2Se3薄膜的相变研究. 物理学报, 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [18] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极. 物理学报, 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [19] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [20] 陈卫平, 萧淑琴, 王文静, 姜 山, 刘宜华. FeCuCrVSiB多层膜巨磁阻抗效应的研究. 物理学报, 2005, 54(6): 2929-2933. doi: 10.7498/aps.54.2929
计量
  • 文章访问数:  4677
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-21
  • 修回日期:  2019-03-11
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

三聚化非厄密晶格中具有趋肤效应的拓扑边缘态

    基金项目: 国家自然科学基金(批准号: 11704064)、吉林省科技发展计划项计划(批准号: 20180520205JH)和吉林省教育厅“十三五”科学技术项目(批准号: JJKH20180010KJ)资助的课题.

摘要: 近年来, 探索新的拓扑量子结构、深入分析各种多聚化拓扑晶格中的新奇物理性质已经成为热点. 并且, 多聚化拓扑模型在量子光学等领域的研究也愈发深入, 拥有广阔的发展前景. 本文聚焦于研究三聚化非厄密晶格中的新奇拓扑特性. 首先, 若晶胞内最近邻正反向耦合不相等, 三聚化模型中的体态和边缘态出现趋肤效应. 其中, 随着最近邻耦合正反系数差的增大, 拓扑保护的边缘态的宽度和简并度均可被调制, 边缘态数量也会减少. 其次, 当在考虑次近邻耦合的影响时, 随着次近邻耦合系数在适当范围内变化, 系统本征能谱的上下能隙及其中具有趋肤效应的边缘态也会发生不对称的变化. 此外, 当适当改变两种耦合系数, 三聚化非厄密模型的体态和边缘态的局域程度也会随之发生变化.

English Abstract

    • 拓扑绝缘体是一种具有全新量子特性的物质态, 在量子理论的发展过程中具有重要意义. 从1980年Klitzing等[1,2]在二维电子气系统中发现了量子整数霍尔效应, 到Haldane[3]发现了量子反常霍尔效应, 以及之后的十年, 拓扑性质相关的理论实验研究都得到了极大的发展[4-10]. 而作为其中最为经典的拓扑模型之一, 一维的Aubry-André-Harper (AAH)模型在研究多聚化晶格方面得到了越来越多的关注与重视. 该模型最初被用来研究类周期系统的局域性转变[11-15]. AAH晶格的本征能谱由三条能带、两条能隙组成, 两条能隙中分别存在可由参数调制的边缘态. 因此, 能谱可分为两种不同的相位: 有边缘态的非平庸相和没有边缘态的平庸相. 然而, 在实际的拓扑实验中, 由于总是与环境相互作用, 所以需考虑耗散效应对系统的影响. 其中, 典型的例子便是针对非厄密系统(引入增益和损耗)的研究[16-27]. 尤其在近几年, 均匀的增益或损耗被引入到一些非厄密的拓扑绝缘体理论或者实验中, 如Su-Schrieffer-Heeger (SSH)模型[28,29]和AAH模型[30-33]的理论研究, 以及一维耦合微腔[34,35]和一维耦合光波导的实验论证[36,37], 都得到了很多厄密系统中没有的新奇现象. 实验中通过设计一维耦合环腔, 在虚数规范场中调制辅助腔的增益和损耗[38], 使得二聚化模型系统中最近邻正反耦合系数出现差值, 从而产生趋肤效应[39,40], 该效应在近年获得极大关注. 区别于同一耦合的正反向系数一致的拓扑系统具有一般性的体边对应关系, 非厄密系统中通过改变晶格正反向耦合系数差, 破坏系统的手性反演对称, 从而展现了扩展的体边对应关系. 主要表现为包含系统的拓扑保护边缘态和体态在内的所有本征态都局域于开放系统单侧边缘附近的趋肤效应. 然而, 三聚化非厄密系统的趋肤效应的研究还不充分. 因此, 本文旨在研究一维三聚化的非厄密晶格的具有趋肤效应的拓扑特性. 将三聚化模型结构从一维链状拓展到类一维的锯齿形结构, 通过适当调制胞内最近邻正反耦合系数差和次近邻耦合系数, 观察三聚化模型中的拓扑特性变化. 发现正反向系数差不为零的最近邻耦合对非厄密系统的能谱和拓扑保护边缘态都有显著影响, 并引发新奇的趋肤效应; 次近邻耦合则对系统能谱的上下能隙中的边缘态能带的宽度和系统本征态的局域效果有影响. 最后, 进行了总结并展望了拥有丰富结构模型的各种新型拓扑材料的发展前景.

    • 图1所示, 本文考虑的是类一维的非厄密三聚化晶格, 并为实现可调的耦合, 将晶胞结构设计为锯齿形. 晶胞内最近邻正向耦合系数为$ g_{1}+\mu $, 反向系数为$ g_{1}-\mu $, 其中$ 2\mu $为最近邻正反向耦合系数差, 次近邻耦合系数为$ \nu $, 胞间耦合系数为$ g_{2} $. 在该非厄密系统中, 在每个晶胞内添加均匀的增益损耗—添加势能$ {\rm i}\gamma $于增益格点$ A $、零势能于中性格点$ B $、势能$ -{\rm i}\gamma $于损耗格点$ C $. 这些参数条件构成了本研究所需的扩展的一维非厄密的AAH模型. 其中, 令$ a_{n} $, $ b_{n} $$ c_{n} $表示第$ n $个晶胞内格点的湮灭算符, 总晶胞数为$ \cal{N} $. 则该扩展的AAH模型的哈密顿量为

      图  1  扩展的三聚化非厄密晶格示意图

      Figure 1.  Schematic of the generalized trimerized non-Hermitian lattice.

      $ H = H_{\rm {AAH}}+H_{\rm {NNN}}+U, $

      式内各项分别为AAH模型哈密顿量$H_{\rm {AAH}} =$$ \sum_{N}[(g_{1}\!+\!\mu)b^{\dagger}_{n}a_{n}+(g_{1}\!+\!\mu)c^{\dagger}_{n}b_{n}+ g_{2}a^{\dagger}_{n+1}c_{n}\!+\!(g_{1}-\mu)$$a^{\dagger}_{n}b_{n}+(g_{1}$$ -\mu)b^{\dagger}_{n}c_{n}+g_{2}c^{\dagger}_{n}a_{n+1}] $, 次近邻项的哈密顿量$ H_{\rm {NNN}} = \sum_{N}\nu c^{\dagger}_{n}a_{n}+{\rm {h.c.}} $, 和非厄密项的哈密顿量$ U ={\rm i}\gamma\sum_{N}[a^\dagger_{n}a_{n}-c^ \dagger_{n}c_{n}] $. 然后将哈密顿量代入薛定谔方程[41], 便可得:

      $ \begin{split} {\rm i}\dot{a_n}& = {\rm i}\gamma a_n+g_2c_{n-1}+(g_1-\mu)b_n+\nu c_n, \\ {\rm i}\dot{b_n}& = (g_1+\mu)a_n+(g_1-\mu)c_n, \\ {\rm i}\dot{c_n}& = -{\rm i}\gamma c_n+(g_1+\mu)b_n+g_2a_{n+1}+\nu a_n, \end{split} $

      结合(1)式与(2)式, 得到可描述该三聚化模型的本征能谱, 如图2所示; 并可对与最近邻耦合有关的趋肤效应和与次近邻耦合有关的拓扑保护边缘态进行深入的研究, 如图3图4所示. 这里设相关参数为: $ {\cal{N}} = 30 $, $ g_1 = 1 $, $ \gamma = 0.2 $, $ g_2\equiv g_1- $$\delta\cos\theta$ ($ \delta = 0.5 $, $ \theta\in \{0, 2{\text{π}}\} $).

      图  2  三聚化非厄密晶格的本征能谱 (a), (c), (e)和(g)分别为$\mu=0, 0.1, 0.15, 0.2$时本征能谱的实部; (b), (d), (f)和(h)分别为$\mu=0, 0.1, 0.15, 0.2$时本征能谱的虚部, 边缘态能带用绿色实线和棕色虚线表示

      Figure 2.  The eigen-energy spectrum of the trimerized non-Hermitian lattice. (a), (c), (e) and (g) show the real parts of the energy spectrum for $\mu=0, 0.1, 0.15, 0.2$, respectively; (b), (d), (f) and (h) show the imaginary parts of the energy spectrum for $\mu=0, 0.1, 0.15, 0.2$. Green solid lines and brown dash lines represent the energy band of the edge states.

      图  3  系统本征态的光子分布 (a) $\mu=0$; (b) $\mu=0.1$; (c) $\mu=0.2$; (d) $\mu=0.3$

      Figure 3.  Photon distributions for eigenstates of the system: (a) $\mu=0$; (b) $\mu=0.1$; (c) $\mu=0.2$; (d) $\mu=0.3$.

      图  4  次近邻耦合影响下系统的本征能谱和边缘态的光子分布 (a), (d)和(g)分别为$\nu=0.1, 0.15, 0.2$时本征能谱的实部; (b), (e)和(h)分别为$\nu=0.1, 0.15, 0.2$时上能隙中的边缘态; (c), (f)和(i)分别为$\nu=0.1, 0.15, 0.2$时下能隙的边缘态

      Figure 4.  The eigen-energy spectrum and photon distributions for edge states of the system under the influence of the next-nearest-neighbor coupling: (a), (d) and (g) show the real parts of the energy spectrum for $\nu=0.1, 0.15, 0.2$; (b), (e) and (h) show the edge states whose energy band are in the upper gaps for $\nu=0.1, 0.15, 0.2$; (c), (f) and (i) show the edge states whose energy bands are in the lower gaps for $\nu=0.1, 0.15, 0.2$.

      首先, 通过调节胞内最近邻正反向耦合系数差, 对系统本征能谱进行分析. 图2(a), 图2(c), 图2(e)图2(g)为系统本征能谱的实部, 能带中包含上、下两个非平庸能隙, 共四条边缘态. 上(下)能隙中存在两条边缘态的本征值, 分别用棕色虚线和绿色实线表示, 且这两条边缘态简并. 图2(b), 图2(d), 图2(f)图2(h)为本征能谱的虚部, 同样用绿色实线和棕色虚线表示对应边缘态的虚部. 系统本征值的实部描述的是能谱中系统能带的位置; 本征值的虚部描述的是能谱中能级的宽度.

      此处, 不考虑次近邻耦合($ \nu = 0 $), 体态的能谱具有对称特征. 如图2(a)图2(b)所示, 当胞内最近邻正反向耦合相同($ \mu = 0 $)时, 体态和边缘态的本征能谱均关于$ E = 0 $$ \theta = {\text{π}} $对称, 能谱的三条能带在$ 0.5{\text{π}} $$ 1.5{\text{π}} $附近区域结合, 上下能隙中的四条边缘态具有相同长度. 然而, 如图2(c)—图2(f)所示, 随着$ \mu $逐渐增大, 虽然体态能谱仍保持原有对称性, 但是用棕色虚线表示边缘态能谱的实部和虚部均会缩短, 而用绿色表示的两条边缘态的实部和虚部均不变化. 当最近邻正反向耦合差继续增大至$ \mu>0.2 $时, 如图2(g)图2(h)所示, 棕色虚线表示的两条边缘态消失, 只存在绿色实线表示的两条边缘态. 这表明边缘态的简并情况发生改变, 边缘态数量由四条缩减到两条, 该三聚化晶格产生了新的拓扑特性. 这对应边缘态在晶格的分布情况就是晶格一侧的两条边缘态消失, 如图3所示, 此为边缘态的趋肤效应.

    • 在上一部分中, 通过对动力学方程的求解, 讨论了本征能谱在最近邻耦合影响下边缘态能带宽度以及数量发生的变化. 本小节通过观察本征态的演变, 继续讨论三聚化非厄密系统中的边缘态和体态的趋肤效应. 图3为该三聚化模型包括体态(蓝点)和拓扑保护边缘态(绿线)在内的所有本征态的分布. 如图3(a)所示, 当$ \mu = 0 $时, 体态均匀分布, 边缘态则对称地局域在晶格的两端. 如图3(b)所示, 随着$ \mu $增大, 所有的本征态都开始向晶格的同一端附近局域, 展现了趋肤效应. 如图3(c)所示, 当$ \mu = 0.2 $时, 本征态的局域性更好; 体态继续向一端局域; 边缘态完全消失, 只存在于左端, 数量也由四条变为两条. 也就是说实现了边缘态数量的动态调节. 如图3(d)所示, 当最近邻正反耦合差继续增大, 体态也完全局域在左端, 也就是说三聚化非厄密晶格本征态的趋肤效应愈加显著.

      接下来, 在趋肤效应下, 继续观察次近邻耦合对本征能谱和边缘态的影响. 在图4中, 第一列描述的是受次近邻耦合影响的本征能谱的实部, 第二列代表上能隙中边缘态的光子分布, 第三列代表下能隙中边缘态的光子分布. 当$ \mu = 0.5 $时, 次近邻耦合系数在适当增加, 如图4(a), 图4(d)图4(g)所示, 能谱的实部仅关于$ \theta = {\text{π}} $对称, 而不再关于$ E = 0 $对称. 值得注意的是, 非平庸的上能隙开始变窄, 导致非平庸拓扑区域缩小; 非平庸的下能隙开始变宽, 导致非平庸相位区域扩大. 通过比较图4(b)图4(c)发现, 相对应的边缘态不同于体态的普通振荡, 而是呈急速衰减. 随着上下能隙中的边缘态能带数量的缩减, 只在上下能隙中各存在一条. 如图4(b), 图4(e)图4(h)所示, 随着次近邻耦合的增强, 由于趋肤效应而局域在左侧的上能隙边缘态的峰值在逐渐减小, 局域性减弱; 而由于趋肤效应而局域在左侧的下能隙边缘态变化正相反, 峰值逐渐增大, 局域效果逐渐增强. 此外, 如果次近邻耦合进一步增强, 本征能谱上下能隙及其边缘态会继续呈现相反的变化趋势; 最终上边缘态能带会缩短直至消失, 下边缘态峰值逐渐增大, 局域效果会明显增强.

    • 本文探讨和比较了扩展的非厄密三聚化晶格的能谱和边缘态的演化和局域效果. 首先, 特殊调制晶胞内的最近邻耦合系数, 即最近邻正反向耦合存在差异, 会导致系统本征态发生趋肤效应. 包括体态和边缘态在内的所有本征态都局域于系统的同一端附近; 并且, 边缘态的二重简并态消失, 边缘态数量由四条减少为两条. 其次, 次近邻耦合对系统能谱的演化有着显著的影响. 次近邻耦合会使系统非平庸能隙和相对应的具有趋肤效应的边缘态发生不对称变化, 且会影响所有本征态的局域效果. 未来, 通过设计多样的多聚化非厄密晶格, 并应用于拓扑量子材料的研究中, 一定会发现更多有意义的、新奇的拓扑物理性质.

      特别感谢东北师范大学物理学院吴金辉教授对文章写作的建议.

参考文献 (41)

目录

    /

    返回文章
    返回