搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用域排列算法设计铌酸锂晶体实现3 μm中红外波段频域纯态单光子源

张晨涛 石小涛 朱文新 朱金龙 郝向英 金锐博

引用本文:
Citation:

利用域排列算法设计铌酸锂晶体实现3 μm中红外波段频域纯态单光子源

张晨涛, 石小涛, 朱文新, 朱金龙, 郝向英, 金锐博

Preparation of spectrally pure single-photon source at 3 μm mid-infrared band from lithium niobate crystal with domain sequence algorithm

Zhang Chen-Tao, Shi Xiao-Tao, Zhu Wen-Xin, Zhu Jin-Long, Hao Xiang-Ying, Jin Rui-Bo
PDF
HTML
导出引用
  • 中红外波段的单光子源对于下一代量子传感、量子通信和量子成像的研究非常重要. 目前常用的产生中红外单光子源的方法是基于周期极化铌酸锂(periodically poled lithium niobate, PPLN)自发参量下转换过程. 但是, 基于普通PPLN制备的单光子源频域纯度不高, 最高值只有0.82左右, 会影响量子信息处理方案的保真度. 本文利用域设计理论对30 mm长铌酸锂晶体的4000个域进行了定制化排列, 消除了相位匹配函数中的旁瓣, 获得了高斯型的分布. 计算得到的单光子源的频域纯度可达0.99, 可调谐范围为2.7—3.3 μm. 该定制极化铌酸锂(customized poled lithium niobate, CPLN)有望为中红外波段量子信息研究提供性能优异的单光子光源.
    The single-photon source in mid-infrared (MIR) band is very important for the next generation of quantum sensing, quantum communication and quantum imaging. At present, the commonly used method of generating MIR single-photon source is based on the spontaneous parametric down conversion (SPDC) process in the periodically poled lithium niobate (PPLN) crystal. However, the spectral purity of single-photon source based on the ordinary PPLN is not high, specifically, its maximum value is only about 0.82, which affects the fidelity of quantum information processing scheme. In this paper, 4000 polarized domains in a 30-mm-long LN crystal are customized by using the domain design theory. The sidelobes in the phase matching function are eliminated, and the Gaussian distribution is obtained. The calculated spectral purity of the single-photon source can reach 0.99, and its tunable range is 2.7–3.3 μm. The customized poled lithium niobate (CPLN) is expected to provide a single-photon source with excellent performance for the study of quantum information in the MIR band.
      通信作者: 郝向英, xyhao.321@163.com ; 金锐博, jin@wit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074299, 91836102, 11704290)资助的课题.
      Corresponding author: Hao Xiang-Ying, xyhao.321@163.com ; Jin Rui-Bo, jin@wit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074299, 91836102, 11704290)
    [1]

    郭光灿 2019 物理 48 464Google Scholar

    Guo G C 2019 Physics 48 464Google Scholar

    [2]

    郭光灿 2020 中国科学: 信息科学 50 1395

    Guo G C 2020 Sci. China Inf. Sci. 50 1395

    [3]

    Jaeger L 2018 Phys. World 26 40

    [4]

    Fernandez D C, Bhargava R, Hewitt S M, Levin I W 2005 Nat. Biotechnol. 23 469Google Scholar

    [5]

    Amrania H, Antonacci G, Chan C H, Drummond, Otto W R, Wright N A, Phillips C 2012 Opt. Express 20 7290Google Scholar

    [6]

    Shi J, Wong T T W, He Y, Li L, Wang L V 2019 Nat. Photonics 13 609Google Scholar

    [7]

    Bellei F, Cartwright A P, Mccaughan A N, Dane A E, Najafi F, Zhao Q, Berggren K K 2016 Opt. Express 24 3248Google Scholar

    [8]

    危语嫣, 高子凯, 王思颖, 朱雅静, 李涛 2022 物理学报 71 050302Google Scholar

    Wei Y Y, Gao Z K, Wang S Y, Zhu Y J, Li T 2022 Acta. Phys. Sin. 71 050302Google Scholar

    [9]

    Wang Q, Hao L, Zhang Y, Xu L, Yang C, Yang X, Zhao Y 2016 Opt. Express 24 5045Google Scholar

    [10]

    陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中 2021 物理学报 70 170601Google Scholar

    Tao Z W, Ren Y C, Abdukirim A, Liu S W, Rao R Z 2021 Acta Phys. Sin. 70 170601Google Scholar

    [11]

    Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601Google Scholar

    [12]

    Sua Y M, Fan H, Shahverdi A, Chen J Y, Huang Y P 2017 Sci. Rep. 7 17494Google Scholar

    [13]

    Mancinelli M, Trenti A, Piccione S, Fontana G, Pavesi L 2017 Nat. Commun. 8 15184Google Scholar

    [14]

    Mccracken R A, Graffitti F, Fedrizzi A 2018 J. Opt. Soc. Am. B 35 C38Google Scholar

    [15]

    Prabhakar S, Shields T, Dada A C, Ebrahim M, Clerici M 2020 Sci. Adv. 6 eaay5195Google Scholar

    [16]

    Wei B, Cai W H, Ding C, Deng G W, Shimizu R, Zhou Q, Jin R B 2021 Opt. Express 29 256Google Scholar

    [17]

    张越, 侯飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳 2018 物理学报 67 144204Google Scholar

    Zhang Y, Hou F Y, Liu T, Zhang X F, Zhang S G, Dong R F 2018 Acta Phys. Sin. 67 144204Google Scholar

    [18]

    Sun C W, Sun Y, Duan J C, Xue G T, Liu Y C, Lu L L, Zhang Q Y, Gong Y X, Xu P 2021 Chin. Phys. B 30 100312Google Scholar

    [19]

    Zhan M Y, Sun Q C, Xiang T, Chen X F 2015 Laser Phys. 25 125203Google Scholar

    [20]

    Mosley P J, Lundeen J S, Smith B J, Walmsley I A 2008 New J. Phys. 10 093011Google Scholar

    [21]

    Jin R B, Wakui K, Shimizu R, Benichi H, Miki S, Yamashita T, Terai H, Wang Z, Fujiwara M 2013 Phys. Rev. A 87 063801Google Scholar

    [22]

    Meyer-Scott E, Montaut N, Tiedau J, Sansoni L, Herrmann H, Bartley T J, Silberhorn C 2017 Phys. Rev. A 95 061803Google Scholar

    [23]

    Branczyk A M, Fedrizzi A, Stace T M, Ralph T C, White A G 2011 Opt. Express 19 55Google Scholar

    [24]

    Kaneda F, Oikawa J, Yabuno M, China F, Miki S, Terai H, Mitsumori Y, Edamatsu K 2021 arXiv: 2111.10981 [quant-ph]

    [25]

    Dixon P B, Shapiro J H, Wong F N 2013 Opt. Express 21 5879Google Scholar

    [26]

    Chen C C, Bo C, Niu M Y, Xu F, Zhang Z S, Shapiro J H, Wong F N C 2017 Opt. Express 25 7300Google Scholar

    [27]

    Cui C H, Arian R, Guha S, Peyghambarian N, Zhang Q, Zhang Z 2019 Phys. Rev. Appl. 12 034059Google Scholar

    [28]

    Cai W H, Tian Y, Wang S, You C, Zhou Q, Jin R B 2022 Adv. Quantum Tech. 5 2200028Google Scholar

    [29]

    Tambasco J, Boes A, Helt L G, Steel M J, Mitchell A 2016 Opt. Express 24 19616Google Scholar

    [30]

    Dosseva A, Cincio L, Brańczyk A M 2016 Phys. Rev. A 93 013801Google Scholar

    [31]

    Graffitti F, Kundys D, Reid D T, Branczyk A M, Fedrizzi A 2017 Quantum Sci. Technol. 2 035001Google Scholar

    [32]

    Graffitti F, Barrow P, Proietti M, Kundys D, Fedrizzi A 2018 Optica 5 514Google Scholar

    [33]

    Graffitti F, Barrow P, Pickston A, Brańczyk A M, Fedrizzi A 2020 Phys. Rev. Lett. 124 053603Google Scholar

    [34]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [35]

    田颖, 蔡吾豪, 杨子祥, 陈峰, 金锐博, 周强 2022 物理学报 71 054201Google Scholar

    Tian Y, Cai W H, Yang Z X, Chen F, Jin R B, Zhou Q 2022 Acta Phys. Sin. 71 054201Google Scholar

    [36]

    翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚 2021 物理学报 70 120302Google Scholar

    Zhai Y W, Dong R F, Quan R A, Xiang X, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 120302Google Scholar

    [37]

    Schlarb U, Betzler K 1994 Phys. Rev. B 50 751Google Scholar

    [38]

    Jin R B, Shimizu R, Wakui K, Benichi H, Sasaki M 2013 Opt. Express 21 10659Google Scholar

    [39]

    Zhu J L, Zhu W X, Shi X T, Zhang C T, Hao X, Yang Z X, Jin R B 2022 J. Opt. Soc. Am. B 40 0100A9Google Scholar

    [40]

    Pickston A, Graffitti F, Barrow P, Morrison C, Fedrizzi A 2021 Opt. Express 29 6991Google Scholar

    [41]

    金锐博, 田颖 2021 安徽大学学报: 自然科学版 45 10

    Jin R B, Tian Y 2021 J. Anhui Univ. Nat. Sci. 45 10

    [42]

    王玺, 叶庆, 董骁, 雷武虎, 吕桐林, 郭彦廷, 胡以华 2022 红外与毫米波学报 41 8

    Yu X, Ye Q, Dong X, Lei W H, Lv T L, Guo Y T, Hu Y H 2022 J. Infrared Millm. W. 45 10 (in Chinese)

    [43]

    胡舒武 2019 博士学位论文 (合肥: 中国科学技术大学)

    Hu S W 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [44]

    罗鸿禹 2019 博士学位论文 (成都: 电子科技大学)

    Luo H Y 2019 Ph. D. Dissertation (ChengDu: University of Electronic Science and Technology of China) (in Chinese)

  • 图 1  定制极化晶体的设计原理图

    Fig. 1.  Principle of designing a customized poling crystal

    图 2  (a) 不同σ参数值对应的归一化的PMF, $\phi_0$表示$\phi(k)$的最大值; (b) 场振幅函数$A(z)$与目标场振幅函数$A_{{\rm{target}}}(z)$; (c) PMF与目标PMF; (d) 极化域分布g(z); (e)—(g) 泵浦包络函数, 相位匹配函数, 联合频谱分布, 对应纯度为99.99%

    Fig. 2.  (a) The normalized PMF with different σ values, where $\phi_0$ is the maximal value of $\phi(k)$; (b) field amplitude function $A(z)$ and the amplitude of the target field $A_{{\rm{target}}}(z)$; (c) PMF and the PMF of the target; (d) poled domain distribution g(z); (e)–(g) pump-envelope function, phase matching function and joint spectral amplitude, purity = 99.99%

    图 3  (a) 在晶体不同位置处归一化的PMF, $\phi_0$表示$\phi(k)$的最大值; (b) 相邻同极向域合并后, 新的域位置与域宽度分布; (c) 不同泵浦光中心波长2倍对应的纯度分布

    Fig. 3.  (a) Normalized PMF at different positions of the crystal, where $\phi_0$ is the maximal value of $\phi(k)$; (b) new location and width distribution after the same polarized domains are combined; (c) purity distribution at different pump central wavelengths (two times)

    图 A1  域排列算法中的4种情况

    Fig. A1.  Four cases in the domain sequence algorithm

  • [1]

    郭光灿 2019 物理 48 464Google Scholar

    Guo G C 2019 Physics 48 464Google Scholar

    [2]

    郭光灿 2020 中国科学: 信息科学 50 1395

    Guo G C 2020 Sci. China Inf. Sci. 50 1395

    [3]

    Jaeger L 2018 Phys. World 26 40

    [4]

    Fernandez D C, Bhargava R, Hewitt S M, Levin I W 2005 Nat. Biotechnol. 23 469Google Scholar

    [5]

    Amrania H, Antonacci G, Chan C H, Drummond, Otto W R, Wright N A, Phillips C 2012 Opt. Express 20 7290Google Scholar

    [6]

    Shi J, Wong T T W, He Y, Li L, Wang L V 2019 Nat. Photonics 13 609Google Scholar

    [7]

    Bellei F, Cartwright A P, Mccaughan A N, Dane A E, Najafi F, Zhao Q, Berggren K K 2016 Opt. Express 24 3248Google Scholar

    [8]

    危语嫣, 高子凯, 王思颖, 朱雅静, 李涛 2022 物理学报 71 050302Google Scholar

    Wei Y Y, Gao Z K, Wang S Y, Zhu Y J, Li T 2022 Acta. Phys. Sin. 71 050302Google Scholar

    [9]

    Wang Q, Hao L, Zhang Y, Xu L, Yang C, Yang X, Zhao Y 2016 Opt. Express 24 5045Google Scholar

    [10]

    陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中 2021 物理学报 70 170601Google Scholar

    Tao Z W, Ren Y C, Abdukirim A, Liu S W, Rao R Z 2021 Acta Phys. Sin. 70 170601Google Scholar

    [11]

    Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601Google Scholar

    [12]

    Sua Y M, Fan H, Shahverdi A, Chen J Y, Huang Y P 2017 Sci. Rep. 7 17494Google Scholar

    [13]

    Mancinelli M, Trenti A, Piccione S, Fontana G, Pavesi L 2017 Nat. Commun. 8 15184Google Scholar

    [14]

    Mccracken R A, Graffitti F, Fedrizzi A 2018 J. Opt. Soc. Am. B 35 C38Google Scholar

    [15]

    Prabhakar S, Shields T, Dada A C, Ebrahim M, Clerici M 2020 Sci. Adv. 6 eaay5195Google Scholar

    [16]

    Wei B, Cai W H, Ding C, Deng G W, Shimizu R, Zhou Q, Jin R B 2021 Opt. Express 29 256Google Scholar

    [17]

    张越, 侯飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳 2018 物理学报 67 144204Google Scholar

    Zhang Y, Hou F Y, Liu T, Zhang X F, Zhang S G, Dong R F 2018 Acta Phys. Sin. 67 144204Google Scholar

    [18]

    Sun C W, Sun Y, Duan J C, Xue G T, Liu Y C, Lu L L, Zhang Q Y, Gong Y X, Xu P 2021 Chin. Phys. B 30 100312Google Scholar

    [19]

    Zhan M Y, Sun Q C, Xiang T, Chen X F 2015 Laser Phys. 25 125203Google Scholar

    [20]

    Mosley P J, Lundeen J S, Smith B J, Walmsley I A 2008 New J. Phys. 10 093011Google Scholar

    [21]

    Jin R B, Wakui K, Shimizu R, Benichi H, Miki S, Yamashita T, Terai H, Wang Z, Fujiwara M 2013 Phys. Rev. A 87 063801Google Scholar

    [22]

    Meyer-Scott E, Montaut N, Tiedau J, Sansoni L, Herrmann H, Bartley T J, Silberhorn C 2017 Phys. Rev. A 95 061803Google Scholar

    [23]

    Branczyk A M, Fedrizzi A, Stace T M, Ralph T C, White A G 2011 Opt. Express 19 55Google Scholar

    [24]

    Kaneda F, Oikawa J, Yabuno M, China F, Miki S, Terai H, Mitsumori Y, Edamatsu K 2021 arXiv: 2111.10981 [quant-ph]

    [25]

    Dixon P B, Shapiro J H, Wong F N 2013 Opt. Express 21 5879Google Scholar

    [26]

    Chen C C, Bo C, Niu M Y, Xu F, Zhang Z S, Shapiro J H, Wong F N C 2017 Opt. Express 25 7300Google Scholar

    [27]

    Cui C H, Arian R, Guha S, Peyghambarian N, Zhang Q, Zhang Z 2019 Phys. Rev. Appl. 12 034059Google Scholar

    [28]

    Cai W H, Tian Y, Wang S, You C, Zhou Q, Jin R B 2022 Adv. Quantum Tech. 5 2200028Google Scholar

    [29]

    Tambasco J, Boes A, Helt L G, Steel M J, Mitchell A 2016 Opt. Express 24 19616Google Scholar

    [30]

    Dosseva A, Cincio L, Brańczyk A M 2016 Phys. Rev. A 93 013801Google Scholar

    [31]

    Graffitti F, Kundys D, Reid D T, Branczyk A M, Fedrizzi A 2017 Quantum Sci. Technol. 2 035001Google Scholar

    [32]

    Graffitti F, Barrow P, Proietti M, Kundys D, Fedrizzi A 2018 Optica 5 514Google Scholar

    [33]

    Graffitti F, Barrow P, Pickston A, Brańczyk A M, Fedrizzi A 2020 Phys. Rev. Lett. 124 053603Google Scholar

    [34]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [35]

    田颖, 蔡吾豪, 杨子祥, 陈峰, 金锐博, 周强 2022 物理学报 71 054201Google Scholar

    Tian Y, Cai W H, Yang Z X, Chen F, Jin R B, Zhou Q 2022 Acta Phys. Sin. 71 054201Google Scholar

    [36]

    翟艺伟, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚 2021 物理学报 70 120302Google Scholar

    Zhai Y W, Dong R F, Quan R A, Xiang X, Liu T, Zhang S G 2021 Acta Phys. Sin. 70 120302Google Scholar

    [37]

    Schlarb U, Betzler K 1994 Phys. Rev. B 50 751Google Scholar

    [38]

    Jin R B, Shimizu R, Wakui K, Benichi H, Sasaki M 2013 Opt. Express 21 10659Google Scholar

    [39]

    Zhu J L, Zhu W X, Shi X T, Zhang C T, Hao X, Yang Z X, Jin R B 2022 J. Opt. Soc. Am. B 40 0100A9Google Scholar

    [40]

    Pickston A, Graffitti F, Barrow P, Morrison C, Fedrizzi A 2021 Opt. Express 29 6991Google Scholar

    [41]

    金锐博, 田颖 2021 安徽大学学报: 自然科学版 45 10

    Jin R B, Tian Y 2021 J. Anhui Univ. Nat. Sci. 45 10

    [42]

    王玺, 叶庆, 董骁, 雷武虎, 吕桐林, 郭彦廷, 胡以华 2022 红外与毫米波学报 41 8

    Yu X, Ye Q, Dong X, Lei W H, Lv T L, Guo Y T, Hu Y H 2022 J. Infrared Millm. W. 45 10 (in Chinese)

    [43]

    胡舒武 2019 博士学位论文 (合肥: 中国科学技术大学)

    Hu S W 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [44]

    罗鸿禹 2019 博士学位论文 (成都: 电子科技大学)

    Luo H Y 2019 Ph. D. Dissertation (ChengDu: University of Electronic Science and Technology of China) (in Chinese)

  • [1] 李铭洲, 李志远. 应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟. 物理学报, 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [2] 张越, 侯飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳. 基于II类周期极化铌酸锂波导的通信波段小型化频率纠缠源产生及其量子特性测量. 物理学报, 2018, 67(14): 144204. doi: 10.7498/aps.67.20180329
    [3] 陈小兰, 张耘, 冉启义. 掺铁铌酸锂晶体的光电导衰减特性研究. 物理学报, 2013, 62(3): 037201. doi: 10.7498/aps.62.037201
    [4] 师丽红, 阎文博, 申绪男, 陈贵锋, 陈洪建, 乔会宾, 贾芳芳, 林爱调. 掺铁铌酸锂晶体中光致散射的锂组分和温度依赖关系研究. 物理学报, 2012, 61(23): 234207. doi: 10.7498/aps.61.234207
    [5] 钟东洲, 佘卫龙. 铌酸锂晶体中飞秒激光脉冲线性电光效应及其色散补偿. 物理学报, 2012, 61(6): 064214. doi: 10.7498/aps.61.064214
    [6] 王晓琰, 李曙光, 刘硕, 张磊, 尹国冰, 冯荣普. 中红外高双折射高非线性宽带正常色散As2 S3光子晶体光纤. 物理学报, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [7] 张耘. 周期性极化铌酸锂的微区拉曼及荧光研究. 物理学报, 2010, 59(8): 5528-5532. doi: 10.7498/aps.59.5528
    [8] 师丽红, 阎文博. 纯铌酸锂晶体红外光谱的低温研究. 物理学报, 2009, 58(7): 4987-4991. doi: 10.7498/aps.58.4987
    [9] 汪大林, 孙军强, 王 健. 基于周期极化反转铌酸锂光波导高速非归零码到归零码的转换. 物理学报, 2008, 57(1): 252-259. doi: 10.7498/aps.57.252
    [10] 付 博, 张国权, 刘祥明, 申 岩, 徐庆君, 孔勇发, 陈绍林, 许京军. 掺杂对铌酸锂晶体非挥发全息存储性能的影响. 物理学报, 2008, 57(5): 2946-2951. doi: 10.7498/aps.57.2946
    [11] 吴 波, 蔡双双, 沈剑威, 沈永行. 基于镁掺杂的周期性畴反转铌酸锂的宽调谐光参量振荡器. 物理学报, 2007, 56(5): 2684-2688. doi: 10.7498/aps.56.2684
    [12] 齐继伟, 李玉栋, 许京军, 崔国新, 孔凡磊, 孙 骞. 铌酸锂晶体中的磁光折变效应研究. 物理学报, 2007, 56(12): 7015-7022. doi: 10.7498/aps.56.7015
    [13] 张开春, 刘盛纲. 周期极化铌酸锂中光整流THz波辐射. 物理学报, 2007, 56(9): 5258-5262. doi: 10.7498/aps.56.5258
    [14] 高垣梅, 刘思敏, 郭 儒, 黄春福, 汪大云. Y向切割掺杂铌酸锂晶体中的光耦合. 物理学报, 2004, 53(9): 2958-2963. doi: 10.7498/aps.53.2958
    [15] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 准位相匹配铌酸锂波导倍频特性分析与优化设计. 物理学报, 2002, 51(3): 565-572. doi: 10.7498/aps.51.565
    [16] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 周期性极化铌酸锂波导全光开关特性分析. 物理学报, 2002, 51(7): 1521-1529. doi: 10.7498/aps.51.1521
    [17] 薛挺, 于建, 杨天新, 倪文俊, 谭莉, 李世忱. 周期性极化铌酸锂晶体光参量振荡调谐与容差特性分析. 物理学报, 2002, 51(11): 2528-2535. doi: 10.7498/aps.51.2528
    [18] 姚江宏, 陈亚辉, 许京军, 张光寅, 朱圣星. 近化学计量比铌酸锂晶体周期极化畴反转特性研究. 物理学报, 2002, 51(1): 192-196. doi: 10.7498/aps.51.192
    [19] 汪 进, 杨 昆, 金 婵. 掺镁铌酸锂晶体结构的研究. 物理学报, 1999, 48(6): 1103-1106. doi: 10.7498/aps.48.1103
    [20] 王业宁, 朱劲松, 谈云鹏. 铌酸锂晶体中多畴层带区倍频光的研究. 物理学报, 1980, 29(12): 1629-1635. doi: 10.7498/aps.29.1629
计量
  • 文章访问数:  3077
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-05-17
  • 上网日期:  2022-10-09
  • 刊出日期:  2022-10-20

/

返回文章
返回