搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

取向相关的Pb(Zr0.52Ti0.48)O3外延薄膜的相图和介电性能

白刚 林翠 刘端生 许杰 李卫 高存法

引用本文:
Citation:

取向相关的Pb(Zr0.52Ti0.48)O3外延薄膜的相图和介电性能

白刚, 林翠, 刘端生, 许杰, 李卫, 高存法

Phase diagram and dielectric properties of orientation-dependent PbZr0.52Ti0.48O3 epitaxial films

Bai Gang, Lin Cui, Liu Duan-Sheng, Xu Jie, Li Wei, Gao Cun-Fa
PDF
HTML
导出引用
  • 探索相变和构建相图对于铁电物理和材料研究至关重要, 是相关理论和实验领域的研究焦点. 随着计算机和人工智能的迅猛发展, 利用机器学习方法并结合其他计算方法如第一性原理, 可以从海量的材料数据中选择符合目标的材料种类, 从而大大节约了实验成本. 本文利用神经网络方法和唯象理论计算准确预测出不同取向铁电薄膜的相图中可能出现的相, 进而建立了(001), (110)和(111)取向Pb(Zr0.52Ti0.48)O3铁电薄膜的温度-应变相图, 并计算了室温下不同取向的极化和介电性能. 通过预测准确率及损失随迭代次数的变化, 发现深度神经网络方法在薄膜温度-应变相图构建及预测相的种类方面具有准确快速等优势. 通过对室温极化与介电性能进行分析, 发现(111)取向的Pb(Zr0.52Ti0.48)O3薄膜面外极化最大, 面外介电系数最小, 且二者对应变变化都不敏感. 这对设计需要介电系数和极化性能处于稳定工作环境及对运行有特殊要求的微纳器件具有十分重要的理论指导意义.
    Exploring phase transition behaviors and constructing phase diagrams are of importance for theoretically and experimentally studying ferroelectric physics and materials. Because of the rapid development of computers and artificial intelligence, especially machine learning methods combined with other computational methods such as first principle calculation, it is possible to predict and choose appropriate materials that meet the target requirements from a large number of material data, which greatly saves the cost of experiments. In this work, we use neural network method and phenomenological theoretical calculations to accurately predict the phase structures that may appear in the phase diagrams of different orientated Pb(Zr0.52Ti0.48)O3 ferroelectric films, and establish the temperature-strain phase diagrams of (001), (110) and (111) oriented thin film, and calculate the polarization and dielectric properties of different oriented films at room temperature. By analyzing the changes of prediction accuracy and loss with the number of iterations, it is found that the deep neural network method has the advantages of high accuracy and speed in the construction of the film temperature-strain phase diagram and the prediction of the types of phases. Through the analysis of the room temperature polarization and dielectric properties, it is found that the (111)-oriented PbZr0.52Ti0.48O3 film has the largest out-of-plane polarization and the smallest out-of-plane dielectric coefficient, and they are insensitive to misfit strain. This work provides guidelines for designing micro-nano devices that require the stable dielectric coefficient and polarization performance in the special working environment and operation.
      通信作者: 白刚, baigang@njupt.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51602159, 61804080)资助的课题
      Corresponding author: Bai Gang, baigang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51602159, 61804080)
    [1]

    Scott J 2007 Science 315 954Google Scholar

    [2]

    Dawber M, Rabe K, Scott J 2005 Rev. Mod. Phys. 77 1083Google Scholar

    [3]

    Schlom D, Chen L, Eom C, Rabe K, Streiffer S, Triscone J 2007 Annu. Rev. Mater. Res. 37 589Google Scholar

    [4]

    Agar J, Pandya S, Xu R, Yadav A, Liu Z, Angsten T, Saremi S, Asta M, Ramesh R, Martin L 2016 MRS Commun. 6 151Google Scholar

    [5]

    Martin L, Chu Y, Ramesh R 2010 Mater. Sci. Eng. 68 89Google Scholar

    [6]

    Schlom D, Chen L, Pan X, Schmehl A, Zurbuchen M 2008 J. Am. Ceram. Soc. 91 2429Google Scholar

    [7]

    Choi K, Biegalski M, Li Y, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y, Pan X, Gopalan V, Chen L, Schlom D, Eom C 2004 Science 306 1005Google Scholar

    [8]

    Haeni J, Irvin P, Chang W, Uecker R, Reiche P, Li Y, Choudhury S, Tian W, Hawley M, Craigo B, Tagantsev A, Pan X, Streiffer S, Chen L, Kirchoefer S, Levy J, Schlom D 2004 Nature (London) 430 758Google Scholar

    [9]

    Sone K, Naganuma H, Miyazaki T, Nakajima T, Okamura S 2010 Jpn. J. Appl. Phys. 49 09MB03Google Scholar

    [10]

    Xu R, Liu S, Grinberg I, Karthik J, Damodaran A, Rappe A, Martin L 2015 Nat. Mater. 14 79Google Scholar

    [11]

    Simon W, Akdogan E, Safari A 2005 J. Appl. Phys. 97 103530Google Scholar

    [12]

    Simon W, Akdogan E, Safari A, Bellotti J 2005 Appl. Phys. Lett. 87 082906Google Scholar

    [13]

    Simon W, Akdogan E, Safari A, Bellotti J 2006 Appl. Phys. Lett. 88 132902Google Scholar

    [14]

    Gui Z, Prosandeev S, Bellaiche L 2011 Phys. Rev. B 84 214112Google Scholar

    [15]

    Raeliarijaona A, Fu H 2014 J. Appl. Phys. 115 054105Google Scholar

    [16]

    Oja R, Johnston K, Frantti J, Nieminen R 2008 Phys. Rev. B 78 094102Google Scholar

    [17]

    Angsten T, Martin L, Asta M 2017 Phys. Rev. B 95 174110Google Scholar

    [18]

    Tagantsev A K, Pertsev N A, Muralt P, Setter N 2002 Phys. Rev. B 65 012104Google Scholar

    [19]

    Akcay G, Misirlioglu I B, Alpay S P 2006 Appl. Phys. Lett. 89 042903Google Scholar

    [20]

    Zhang J X, Li Y L, Wang Y, Lliu Z K, Chen L Q, Chu Y H, Zavaliche F, Ramesh R 2007 J. Appl. Lett. 101 114105Google Scholar

    [21]

    Wu H, Ma X, Zhang Z, Zeng J, Wang J, Chai G 2016 AIP Adv. 6 015309Google Scholar

    [22]

    Mtebwa M, Tagantsev A K, Yamada T, Gemeiner P, Dkhil B, Setter N 2016 Phys. Rev. B 93 144113Google Scholar

    [23]

    Wang F, Ma W 2019 J. Appl. Lett. 125 082528Google Scholar

    [24]

    Qiu J, Chen Z, Wang X, Yuan N, Ding J 2016 Solid State Comm. 246 5Google Scholar

    [25]

    Qiu J, Chen Z, Wang X, Yuan N, Ding J 2016 Solid State Comm. 236 1Google Scholar

    [26]

    Li L, Yang Y, Zhang D, Ye Z, Jesse S, Kalinin S, Vasudevan R 2018 Sci. Adv. 4 eaap8672Google Scholar

    [27]

    Yuan R, Tian Y, Xue D, Xue D, Zhou Y, Ding X, Sun J, Lookman T 2019 Adv. Sci. 6 1901395Google Scholar

    [28]

    Pertsev N, Zembilgotov A, Tagantsev A 1998 Phys. Rev. Lett. 80 1988Google Scholar

    [29]

    Liu Y and Li J 2011 Phys. Rev. B 84 132104Google Scholar

    [30]

    Chen L 2007 Landau Free-Energy Coefficients, Physics of Ferroelectrics: A Modern Perspective (Berlin: Springer-Verlag)

    [31]

    Liu D, Bai G, Gao C 2020 J. Appl. Lett. 127 154101Google Scholar

    [32]

    Hornik K, Stinchcombe M, White H 1989 Neural. Netw. 2 359Google Scholar

    [33]

    Zhu Z, Li J, Lai F, Zhen Y, Lin Y, Nan C, Li L 2007 Appl. Phys. Lett. 91 222910Google Scholar

    [34]

    Peng B, Zhang Q, Bai G, Leighton G, Shaw C, Milne S, Zou B, Sun W, Huang H, Wang Z 2019 Energy Environ. Sci. 12 1708Google Scholar

    [35]

    Huang H, Zhang G, Ma X, Liang D, Wang J, Liu Y, Wang Q, Chen L 2018 J. Am. Ceram. Soc. 101 1566Google Scholar

  • 图 1  (a) 定向构造的训练集示例; (b) DNNs预测准确率及损失随迭代次数的变化; (c) DNNs预测的(110)取向的PZT52/48相图

    Fig. 1.  (a) Constructed training set example; (b) the accuracy and loss of DNNs as a function of the number of iterations; (c) the temperature-misfit strain phase diagram of (110) oriented PZT52/48 thin film obtained by DNNs classification.

    图 2  (a), (c), (e)分别为(001), (110), (111)取向薄膜可能存在相的结构示意图; (b), (d), (f)分别为(001), (110), (111)取向PZT52/48薄膜的相图, 其中粗线表示一级相变, 细线表示二级相变

    Fig. 2.  Schematic diagrams of phase structures for (001) (a), (110) (c) and (111) (e) oriented ferroelectric PZT52/48 films; temperature-strain phase diagrams of (001) (b), (110) (d) and (111) (f) oriented PZT52/48 films. Thick and thin lines denote the first order and second order transitions, respectively.

    图 3  (a) (001), (b) (110)和(c) (111)取向PZT54/48薄膜的室温极化随应变的变化

    Fig. 3.  Strain dependent polarization of (a) (001), (b) (110), (c) (111) oriented PZT52/48 films at room temperature

    图 4  在室温下, (a) (001), (b) (110)和(c) (111)取向PZT52/48薄膜的介电系数随应变的变化

    Fig. 4.  Strain dependent dielectric coefficients of (a) (001), (b) (110) and (c) (111) oriented PZT52/48 films at room temperature.

    表 1  不同取向PZT52/48薄膜相图中出现的相的极化分量的特征

    Table 1.  Polarization components of the different phases occurring in strain-temperature phase diagrams of (001), (110), and (111) oriented PZT52/48 films.

    相结构全局坐标晶体坐标
    (001)顺电p${P_1} = {P_2} = {P_3} = 0$${P_1} = {P_2} = {P_3} = 0$
    四方T${P_1} = {P_2} = 0, {P_3} \ne 0$${P_1} = {P_2} = 0, {P_3} \ne 0$
    单斜M${P_1} = {P_2} \ne 0, {P_3} \ne 0$${P_1} = {P_2} \ne 0, {P_3} \ne 0$
    正交O${P_1} = {P_2} \ne 0, {P_3} = 0$${P_1} = {P_2} \ne 0, {P_3} = 0$
    (110)顺电p${P'_1} = {P'_2} = {P'_3} = 0$${P_1} = {P_2} = {P_3} = 0$
    正交O${P'_1} = {P'_2} = 0, {P'_3}\ne 0$${P_1} = {P_2} \ne 0, {P_3} = 0$
    单斜MB${P'_1} < {P'_{\rm{3} } } {\rm{/} }\sqrt {\rm{2} }, {P'_{\rm{2} } } = 0$${P_1} = {P_2} > {P_3}$
    单斜MA${P'_1} > {P'_{\rm{2} } } {\rm{/} }\sqrt {\rm{2} }, {P'_3} = 0$${P_1} = {P_2} < {P_3}$
    四方T${P'_1} \ne {\rm{0 } },{P'_{\rm{2} } } = 0, {P'_3} = 0$$ {P}_{1}{} = {P}_{2}=0, {P}_{3}\ne \rm{0}$
    (111)顺电p${P''_1}= {P''_2} = {P''_3} = 0$${P_1} = {P_2} = {P_3} = 0$
    三方R${P''_1} = {P''_2} = 0, \;{P''_3} \ne 0$${P_1} = {P_2} = {P_3} \ne 0$
    单斜MB${P''_1} = 0, {P''_2} \ne 0, {P''_3} \ne 0$${P_1} = {P_2} > {P_3} \ne {\rm{0}}$
    下载: 导出CSV
  • [1]

    Scott J 2007 Science 315 954Google Scholar

    [2]

    Dawber M, Rabe K, Scott J 2005 Rev. Mod. Phys. 77 1083Google Scholar

    [3]

    Schlom D, Chen L, Eom C, Rabe K, Streiffer S, Triscone J 2007 Annu. Rev. Mater. Res. 37 589Google Scholar

    [4]

    Agar J, Pandya S, Xu R, Yadav A, Liu Z, Angsten T, Saremi S, Asta M, Ramesh R, Martin L 2016 MRS Commun. 6 151Google Scholar

    [5]

    Martin L, Chu Y, Ramesh R 2010 Mater. Sci. Eng. 68 89Google Scholar

    [6]

    Schlom D, Chen L, Pan X, Schmehl A, Zurbuchen M 2008 J. Am. Ceram. Soc. 91 2429Google Scholar

    [7]

    Choi K, Biegalski M, Li Y, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y, Pan X, Gopalan V, Chen L, Schlom D, Eom C 2004 Science 306 1005Google Scholar

    [8]

    Haeni J, Irvin P, Chang W, Uecker R, Reiche P, Li Y, Choudhury S, Tian W, Hawley M, Craigo B, Tagantsev A, Pan X, Streiffer S, Chen L, Kirchoefer S, Levy J, Schlom D 2004 Nature (London) 430 758Google Scholar

    [9]

    Sone K, Naganuma H, Miyazaki T, Nakajima T, Okamura S 2010 Jpn. J. Appl. Phys. 49 09MB03Google Scholar

    [10]

    Xu R, Liu S, Grinberg I, Karthik J, Damodaran A, Rappe A, Martin L 2015 Nat. Mater. 14 79Google Scholar

    [11]

    Simon W, Akdogan E, Safari A 2005 J. Appl. Phys. 97 103530Google Scholar

    [12]

    Simon W, Akdogan E, Safari A, Bellotti J 2005 Appl. Phys. Lett. 87 082906Google Scholar

    [13]

    Simon W, Akdogan E, Safari A, Bellotti J 2006 Appl. Phys. Lett. 88 132902Google Scholar

    [14]

    Gui Z, Prosandeev S, Bellaiche L 2011 Phys. Rev. B 84 214112Google Scholar

    [15]

    Raeliarijaona A, Fu H 2014 J. Appl. Phys. 115 054105Google Scholar

    [16]

    Oja R, Johnston K, Frantti J, Nieminen R 2008 Phys. Rev. B 78 094102Google Scholar

    [17]

    Angsten T, Martin L, Asta M 2017 Phys. Rev. B 95 174110Google Scholar

    [18]

    Tagantsev A K, Pertsev N A, Muralt P, Setter N 2002 Phys. Rev. B 65 012104Google Scholar

    [19]

    Akcay G, Misirlioglu I B, Alpay S P 2006 Appl. Phys. Lett. 89 042903Google Scholar

    [20]

    Zhang J X, Li Y L, Wang Y, Lliu Z K, Chen L Q, Chu Y H, Zavaliche F, Ramesh R 2007 J. Appl. Lett. 101 114105Google Scholar

    [21]

    Wu H, Ma X, Zhang Z, Zeng J, Wang J, Chai G 2016 AIP Adv. 6 015309Google Scholar

    [22]

    Mtebwa M, Tagantsev A K, Yamada T, Gemeiner P, Dkhil B, Setter N 2016 Phys. Rev. B 93 144113Google Scholar

    [23]

    Wang F, Ma W 2019 J. Appl. Lett. 125 082528Google Scholar

    [24]

    Qiu J, Chen Z, Wang X, Yuan N, Ding J 2016 Solid State Comm. 246 5Google Scholar

    [25]

    Qiu J, Chen Z, Wang X, Yuan N, Ding J 2016 Solid State Comm. 236 1Google Scholar

    [26]

    Li L, Yang Y, Zhang D, Ye Z, Jesse S, Kalinin S, Vasudevan R 2018 Sci. Adv. 4 eaap8672Google Scholar

    [27]

    Yuan R, Tian Y, Xue D, Xue D, Zhou Y, Ding X, Sun J, Lookman T 2019 Adv. Sci. 6 1901395Google Scholar

    [28]

    Pertsev N, Zembilgotov A, Tagantsev A 1998 Phys. Rev. Lett. 80 1988Google Scholar

    [29]

    Liu Y and Li J 2011 Phys. Rev. B 84 132104Google Scholar

    [30]

    Chen L 2007 Landau Free-Energy Coefficients, Physics of Ferroelectrics: A Modern Perspective (Berlin: Springer-Verlag)

    [31]

    Liu D, Bai G, Gao C 2020 J. Appl. Lett. 127 154101Google Scholar

    [32]

    Hornik K, Stinchcombe M, White H 1989 Neural. Netw. 2 359Google Scholar

    [33]

    Zhu Z, Li J, Lai F, Zhen Y, Lin Y, Nan C, Li L 2007 Appl. Phys. Lett. 91 222910Google Scholar

    [34]

    Peng B, Zhang Q, Bai G, Leighton G, Shaw C, Milne S, Zou B, Sun W, Huang H, Wang Z 2019 Energy Environ. Sci. 12 1708Google Scholar

    [35]

    Huang H, Zhang G, Ma X, Liang D, Wang J, Liu Y, Wang Q, Chen L 2018 J. Am. Ceram. Soc. 101 1566Google Scholar

  • [1] 万新阳, 章烨辉, 陆帅华, 吴艺蕾, 周跫桦, 王金兰. 机器学习加速搜寻新型双钙钛矿氧化物光催化剂. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220601
    [2] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [3] 康俊锋, 冯松江, 邹倩, 李艳杰, 丁瑞强, 钟权加. 基于机器学习的非线性局部Lyapunov向量集合预报订正. 物理学报, 2022, 71(8): 080503. doi: 10.7498/aps.71.20212260
    [4] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [5] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测. 物理学报, 2021, 70(16): 168702. doi: 10.7498/aps.70.20210403
    [6] 蒋永林, 何长春, 杨小宝. ScxY1–x Fe2合金固溶和V2x Fe2(1–x)Zr有序-无序转变的理论预测. 物理学报, 2021, 70(21): 213601. doi: 10.7498/aps.70.20210998
    [7] 刘武, 朱成皖, 李昊天, 赵谡玲, 乔泊, 徐征, 宋丹丹. 基于机器学习和器件模拟对Cu(In,Ga)Se2电池中Ga含量梯度的优化分析. 物理学报, 2021, 70(23): 238802. doi: 10.7498/aps.70.20211234
    [8] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [9] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [10] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法. 物理学报, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [11] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [12] 张龙, 翁征宇. Hubbard模型中的相位弦效应与交互Chern-Simons理论. 物理学报, 2015, 64(21): 217101. doi: 10.7498/aps.64.217101
    [13] 王歆钰, 储瑞江, 魏胜男, 董正超, 仲崇贵, 曹海霞. 应力作用下EuTiO3铁电薄膜电热效应的唯象理论研究. 物理学报, 2015, 64(11): 117701. doi: 10.7498/aps.64.117701
    [14] 文娟辉, 杨琼, 曹觉先, 周益春. 铁电薄膜漏电流的应变调控. 物理学报, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [15] 卢兆信. 参数修改对铁电薄膜相变性质的影响. 物理学报, 2013, 62(11): 116802. doi: 10.7498/aps.62.116802
    [16] 孙春峰. 镶嵌正方晶格上Gauss模型的相图. 物理学报, 2012, 61(8): 086802. doi: 10.7498/aps.61.086802
    [17] 朱杰, 张辉, 张鹏翔, 谢康, 胡俊涛. Pb(Zr0.3Ti0.7)O3铁电薄膜激光感生电压效应. 物理学报, 2010, 59(9): 6417-6422. doi: 10.7498/aps.59.6417
    [18] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [19] 王龙海, 于 军, 刘 锋, 郑朝丹, 李 佳, 王耘波, 高峻雄, 王志红, 曾慧中, 赵素玲. PT/PZT/PT铁电薄膜的铁电畴和畴壁. 物理学报, 2006, 55(5): 2590-2595. doi: 10.7498/aps.55.2590
    [20] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图. 物理学报, 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
计量
  • 文章访问数:  1268
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-19
  • 修回日期:  2021-01-25
  • 上网日期:  2021-06-10
  • 刊出日期:  2021-06-20

取向相关的Pb(Zr0.52Ti0.48)O3外延薄膜的相图和介电性能

  • 1. 南京邮电大学电子与光学工程学院、微电子学院, 南京 210023
  • 2. 南京大学固体微结构物理国家重点实验室, 南京 210093
  • 3. 南京航空航天大学机械结构力学控制国家重点实验室, 南京 210016
  • 通信作者: 白刚, baigang@njupt.edu.cn
    基金项目: 国家自然科学基金 (批准号: 51602159, 61804080)资助的课题

摘要: 探索相变和构建相图对于铁电物理和材料研究至关重要, 是相关理论和实验领域的研究焦点. 随着计算机和人工智能的迅猛发展, 利用机器学习方法并结合其他计算方法如第一性原理, 可以从海量的材料数据中选择符合目标的材料种类, 从而大大节约了实验成本. 本文利用神经网络方法和唯象理论计算准确预测出不同取向铁电薄膜的相图中可能出现的相, 进而建立了(001), (110)和(111)取向Pb(Zr0.52Ti0.48)O3铁电薄膜的温度-应变相图, 并计算了室温下不同取向的极化和介电性能. 通过预测准确率及损失随迭代次数的变化, 发现深度神经网络方法在薄膜温度-应变相图构建及预测相的种类方面具有准确快速等优势. 通过对室温极化与介电性能进行分析, 发现(111)取向的Pb(Zr0.52Ti0.48)O3薄膜面外极化最大, 面外介电系数最小, 且二者对应变变化都不敏感. 这对设计需要介电系数和极化性能处于稳定工作环境及对运行有特殊要求的微纳器件具有十分重要的理论指导意义.

English Abstract

    • 铁电薄膜材料具有优异的铁电、介电、压电、热电和电光性能, 被广泛应用于电容器、非易失性存储器、压电传感器、驱动器、红外探测器、光电器件等电子器件中, 在现代电子技术中发挥着重要作用[1,2]. 由于与基底(衬底)的晶格不匹配而导致薄膜内产生失配应变, 大量的实验和理论研究表明, 失配应变可以显著调控外延薄膜的物理性能, 包括相变温度、相结构类型与相稳定性、铁电性能、介电压电性能等[3-6]. 例如, 大的压应变可以显著提高(001)取向BaTiO3薄膜的居里温度和剩余极化强度[7], 张应变会诱发量子顺电体SrTiO3薄膜的铁电性[8]. 另外沉积在柔性基地上的铁电薄膜在弯曲、拉、压下也会产生应变, 甚至产生更大的应变, 因此应变工程是调控铁电薄膜相变及物性的一种有力手段.

      另外, 控制薄膜取向也是一种重要的调节物理性能的途径. 当薄膜处于不同的机械边界条件下, 改变基底的取向, 可以稳定不同晶体的对称相. 目前, 关于铁电薄膜的理论和实验研究主要集中在应变调控(001)取向薄膜的性能上, 而对(110)和(111)取向薄膜性能的研究相对较少. 随着现代薄膜制备技术的迅猛发展, 现在已经可以十分精确地控制铁电薄膜的晶体取向. 已有实验工作证明生长在(110)和(111)取向衬底上的铁电薄膜表现出独特的物理性能[9-13]. 第一性原理计算[14-17]和唯象理论[18-22]也已经被用于研究(110)和(111)取向的铁电薄膜的应变效应. 但是第一性原理通常只能计算绝对零度下的材料性能, 因而不易与实验对比, 且计算工作量大. 因此第一性原理计算并不十分适用于建立薄膜的温度-应变相图. 而基于Landau-Ginsburg-Devonshire (LGD)的唯象热力学理论具有计算量小, 便于与实验对比等优点, 且在计算与温度相关的物理性能方面有着明显的优势. Tagantsev等[18]最早建立了(111)取向的PbTiO3铁电薄膜的唯象热力学理论, 但缺乏有效自由能的具体展开式. 之后, Ackay等[19]和 Zhang等[20]给出了不同取向的铁电薄膜的有效自由能表达式, 但是这些理论只包含极化的二阶项和四阶项, 不包括六阶项, 因此不能用于对一级相变的研究. 直到2016年, Wu 等[21]和Mtebwa等[22]建立了基于六阶极化项的(110)和(111)取向的铁电薄膜热力学理论. 最近, Wang和Ma[23]建立了基于极化八阶项的(110)取向铁电薄膜的热力学理论. 但是(110)和(111)取向的有效自由能表达式比较复杂, 以至于一些文献报道的结果存在不一致的地方[21,22,24,25], 因此有必要对不同取向的有效自由能表达式和相变进行总结和澄清.

      近年来, 机器学习在材料科学领域的地位日益突出, 已经成为了材料科学领域强有力的研究工具和方法, 并且该方法在铁电、压电材料领域也越来越受到重视. 利用机器学习方法并结合其他方法如第一性原理等, 可以从海量的材料数据中选择符合目标的材料种类, 这样可以大大节约实验的成本. 例如, 采用无监督机器学习方法分析电压-热激励下压电弛豫的高维数据集, 自动识别材料的相变过程, 构建弛豫铁电晶体的电压-温度相图[26]. Yuan等[27]利用机器学习方法结合领域知识快速开发了低电场下具有高储能密度的钛酸钡基铁电陶瓷. 最近本研究小组利用机器学习方法结合非线性唯象理论对(001)取向无铅压电K1–x Nax NbO3薄膜的相图构建以及相的精准分类进行了研究, 发现机器学习在复杂相图的构建方面具有明显优势. 但是, 目前机器学习在更复杂的(110)和(111)取向薄膜相图的构建和相的分类方面的应用研究还比较缺乏.

      本文以准同型相界组分Pb(Zr0.52Ti0.48)O3 (PZT52/48)外延薄膜为研究对象, 基于唯象LGD理论结合机器学习方法高精准度地对不同取向的单畴单晶薄膜中的相进行分类, 并快速准确地构建了温度-应变相图. 此外, 也研究了室温下不同取向的铁电薄膜的铁电和介电性能, 通过调控应变和取向使极化和介电系数处于稳定或者较大的峰值状态, 这对设计对不同工作环境和运行有要求的微纳器件具有十分重要的理论指导意义.

    • 对于(001)取向外延薄膜, 选应变uij、极化P和温度T作为自变量, 因此亥姆赫兹函数F可作为外延薄膜的热力势. 其表达式可以从弹性吉布斯自由能G通过勒让德转换得到$F = G + {\sigma _1}{u_1} + $$ {\sigma _2}{u_2} + {\sigma _6}{u_6}$.

      对于生长在(001)取向立方基底上的外延铁电薄膜, 弹性吉布斯自由能为[28,29]

      $\begin{split} G =\;& \alpha _1\left( {P_1^2 + P_2^2{\rm{ + }}P_3^2} \right) + \alpha _{11}\left( {P_1^4 + P_2^4{\rm{ + }}P_3^4} \right) + \alpha _{12}\left( {P_1^2P_2^2 + P_1^2P_3^4 + P_2^2P_3^4} \right) + {\alpha _{111}}\left( {P_1^6 + P_2^6 + P_3^6} \right) \\ & + {\alpha _{112}}\left[ P_1^4\left( {P_2^2 + P_3^2} \right)\right. \left.+ P_2^4\left( {P_1^2 + P_3^2} \right) + P_3^4\left( {P_1^2 + P_2^2} \right) \right] + {\alpha _{123}}P_1^2P_2^2P_3^2 - \frac{1}{2}{s_{11}}\left( {\sigma _1^2 + \sigma _2^2 + \sigma _3^2} \right)\\ &- {s_{12}}\left( {{\sigma _1}{\sigma _2} + {\sigma _1}{\sigma _3} + {\sigma _2}{\sigma _3}} \right) - \frac{1}{2}{s_{44}}\left( \sigma _4^2 \right. \left.+ \sigma _5^2 + \sigma _6^2 \right) - {Q_{11}}\left( {{\sigma _1}P_1^2 + {\sigma _2}P_2^2 + {\sigma _3}P_3^2} \right) \\ &- {Q_{12}}\left[ {\sigma _1}\left( {P_2^2 + P_3^2} \right) + {\sigma _2}\left( {P_1^2 + P_3^2} \right) \right. \left.+ {\sigma _3}\left( {P_1^2 + P_2^2} \right) \right] - {Q_{44}}( {\sigma _4}{P_2}{P_3} + {\sigma _5}{P_1}{P_3} + {\sigma _6}{P_1}P{}_2), \end{split} $

      其中, α1, αijαijk为介电刚度系数; sij为弹性柔度系数; Qij为电致伸缩系数; σiPi为晶体坐标系下的应力分量和极化分量. 其中, 铁电材料的介电刚度系数α1与温度之间关系为

      ${\alpha _1} = \frac{{T - {T_0}}}{{{\rm{2}}{\varepsilon _{\rm{0}}}C}} ,$

      式中, C 是居里-外斯常数, ε0 是真空中的介电常数, T0 是材料的居里-外斯温度. 计算所采用的材料参数见参考文献[30].

      对于(001)取向, 引入晶体坐标系${ X} = ({x_{\rm{1}}}, {x_{\rm{2}}}, $$ {x_{\rm{3}}})$, 其中 x1, x2x3 分别沿[100], [010]和[001]晶向. 前人已经进行了大量的理论研究, 这里不详细讨论. 假定生长在立方衬底上, ${u_{\rm{m}}} = \left( {b - {a_0}} \right)/{a_0}$是外延系统中的失配应变, 其由衬底有效晶格参数b和自由支撑膜的等效立方晶格常数${a_0}$定义, 根据机械边界条件u1 = u2 = um, σ3 = σ4 = σ5 = 0, 可得到(001)薄膜亥姆赫兹函数F [28](见附录A).

      本文着重研究(110)和(111)取向的单晶单畴PZT52/48铁电薄膜. 为了方便研究讨论, 需要引进新的坐标系来描述薄膜的极化平衡态和应力状态. 对于(110)取向, 引入全局坐标系${{ X}'} = $$ ({x'_1}, {x'_2}, {x'_3})$, ${x'_1}, {x'_2}, {x'_3}$ 分别沿着$\left[ {{\rm{001}}} \right]$, $\left[ {{{1{\bar {1}}0}}} \right]$, $\left[ {{\rm{110}}} \right]$晶向; 对于(111)取向, 引入${{ X}''} = ({x''_1}, {x''_{\rm{2}}}, {x''_3})$, 其中${x''_1}, {x''_{\rm{2}}}, {x''_3}$ 分别沿着$\left[ {{{1{\bar 1}0}}} \right]$, $\left[ {{{11{\bar 2}}}} \right]$, $\left[ {{\rm{111}}} \right]$晶向. 在全局坐标系${{ X}'}$${{ X}''}$中, ${x'_{\rm{3}}}$${x''_3}$轴都垂直于薄膜, 而$ {{x}^{\prime }}_{1}({{x}^{\prime }}_{2})$${x''_1}({x''_{\rm{2}}})$都在薄膜面内. 因此在全局坐标系${{ X}'}$${{ X}''}$中的亥姆赫兹函数分别为$F'$$F''$, 相应的极化分量和应力分量可以利用坐标转化矩阵${{{T}}'_{ij}}$${{{T}}''_{ij}}$将晶体坐标下的极化分量Pi和应力分量σij转化到全局坐标系${{ X}'}$${{ X}''}$下得到[21].

      对于(110)取向,

      ${{{T}}'_{ij}} = \left[ {\begin{array}{*{20}{c}} {\rm{0}}&0&{\rm{1}} \\ {\dfrac{{\sqrt {\rm{2}} }}{{\rm{2}}}}&{ - \dfrac{{\sqrt {\rm{2}} }}{{\rm{2}}}}&0 \\ {\dfrac{{\sqrt {\rm{2}} }}{{\rm{2}}}}&{\dfrac{{\sqrt {\rm{2}} }}{{\rm{2}}}}&0 \end{array}} \right].$

      根据相应的机械边界条件, ${u'_1} = {u'_2} = {u_{\rm{m}}}$, ${\sigma '_{\rm{3}}} = $$ {\sigma '_{\rm{4}}} = {\sigma '_{\rm{5}}} = 0$, 可得(110)薄膜的亥姆赫兹函数$F'$(见附录B)

      对于(111)取向,

      ${{{T}}''_{ij}} = \left[ {\begin{array}{*{20}{c}} {\dfrac{{\sqrt {\rm{2}} }}{{\rm{2}}}}&{ - \dfrac{{\sqrt {\rm{2}} }}{{\rm{2}}}}&0 \\ {\dfrac{{\sqrt 6 }}{6}}&{\dfrac{{\sqrt 6 }}{6}}&{ - \dfrac{{\sqrt 6 }}{3}} \\ {\dfrac{{\sqrt 3 }}{3}}&{\dfrac{{\sqrt 3 }}{3}}&{\dfrac{{\sqrt 3 }}{3}} \end{array}} \right].$

      根据相应的机械边界条件, ${u''_1} = {u''_{\rm{2}}} = {u_{\rm{m}}}$, ${\sigma ''_{\rm{3}}} = $$ {\sigma ''_{\rm{4}}} = {\sigma ''_{\rm{5}}} = 0$, 可得(110)薄膜的亥姆赫兹函数$F''$(见附录C)

      基于自由能最小原理来得到极化平衡态, 即通过对自由能求最小值得到, 利用python编程使用全局最优算法分别对(001), (110)和(111)取向求得不同温度和应变条件下亥姆赫兹函数的最小值, 从而得到全局坐标下的平衡极化分量. 下面以(110)取向为例, 可以通过

      $ \begin{split}\;& {{\eta}} ' = {{{\chi}} '^{ - 1}} \\ =\;& {\left( {\begin{array}{*{20}{c}} {\dfrac{{{\partial ^2}F'}}{{\partial {{P'_1}}\partial {{P'_1}}}}}&{\dfrac{{{\partial ^2}F'}}{{\partial {{P'_1}}\partial {{P'_2}}}}}&{\dfrac{{{\partial ^2}F'}}{{\partial {{P'_1}}\partial {{P'_3}}}}} \\ {\dfrac{{{\partial ^2}F'}}{{\partial {{P'_2}}\partial {{P'_1}}}}}&{\dfrac{{{\partial ^2}F'}}{{\partial {{P'_2}}\partial {{P'_2}}}}}&{\dfrac{{{\partial ^2}F'}}{{\partial {{P'_2}}\partial {{P'_3}}}}} \\ {\dfrac{{{\partial ^2}F'}}{{\partial {{P'_3}}\partial {{P'_1}}}}}&{\dfrac{{{\partial ^2}F'}}{{\partial {{P'_3}}\partial {{P'_2}}}}}&{\dfrac{{{\partial ^2}F'}}{{\partial {{P'_3}}\partial {{P'_3}}}}} \end{array}} \right)^{ - 1}} \end{split}$

      确定介电极化率, 然后利用

      ${\varepsilon '_{ij}} = 1 + \frac{{{\eta '_{ij}}}}{{{\varepsilon _0}}} $

      得到相对介电常数. 其他取向按照类似的方法计算.

    • 机器学习的一般流程可以概括为以下4个步骤: 1)样本特征选择; 2)准备数据集; 3)选择模型和训练; 4)模型评估. 值得一提的是, 数据集按照一定的比例分为训练集、验证集和测试集, 其中训练集和测试集尽可能互斥, 这意味着测试集尽量不在训练集中出现, 未在训练过程中使用过. 通过模型训练过程, 对训练集样本的特征进行统计和归纳, 然后通过不同的算法可以有效地对未经训练的测试集数据进行预测, 从而完成分类任务.

      在进行机器学习前, 利用python编程使用全局最优算法分别对(001), (110)和(111)取向求得不同温度和应变下亥姆赫兹函数的最小值, 从而得到全局坐标下的平衡极化分量. 下面以最复杂的(110)取向为例说明如何利用机器学习方法对未知相图进行预测. 对于(110)取向薄膜, 可能出现的相有以下8个相(因为事先并不知道什么相, 先以字母标记): a相(${P'_1} = {P'_2} = {P'_3} = 0$), b相 (${P'_1} \ne 0, $$ {P'_2} = {P'_3} = 0$), c相 (${P'_1} = {P'_2}= 0, {P'_3} \ne 0$), d相(${P'_1} = $$ {P'_3} = 0, {P'_2} \ne 0$), e相(${P'_1} \ne 0, {P'_3} \ne 0, {P'_2}= 0$), f$({P'_1}\! = 0, {P'_2} \!\ne 0, {P'_3} \!\ne 0 )$, g$({P'_1} \!\ne 0, {P'_2} \!\ne 0, {P'_3} \!= 0)$, h相(${P'_1} \ne 0, {P'_2} \ne 0, {P'_3} \ne 0$), 通过计算发现所有极化大小范围是0 ≤ ${P'_i}$ < 1 (也可以找出最大值极化, 其他极化都除以最大值极化, 称之为归一化, 这里不赘述, 详细见文献[31]). 选取极化Pi作为样本的特征, 构成的样本类似这样: xm = $[{P'_1}, $$ {P'_2}, {P'_3} ]$ (1 ≤ mn), n为样本总数, xm由训练集样本X_train与测试集样本X_test组成. 通过python的numpy库中的random类可以生成0—1的随机浮点数, 因此X_train可以这样被定向构成. 测试集样本X_test为利用全局最优算法计算的(110)取向薄膜的极化分量. 而要建立关于样本预测的模型, 需要样本的“结果”信息, 称之为标记, 记作ym, 由训练集标记y_train和测试集标记y_test组成. ym在分类问题中必须是整数, 可以设定ym = 0 (a相), 1 (b相), 2 (c相), 3 (d相), 4 (e相), 5 (f相), 6 (g相), 7 (h相), 数值大小仅仅代表所属类别, 与xm中的特征无关, 只要保证将不同类别样本的标记设置为不同数值即可, 图1(a)为最终定向构造的训练集示例. 这里采用深度神经网络(deep neural networks, DNNs)的方法对相进行分类. 一般来说, DNNs的综合性能最优[31], 因为DNNs自适应和可调性很强, 且预测准确率高于k近邻(k-nearest neighbours, k-NN)法和支持向量机(support vector machine, SVM)法. DNNs在中等以及大量数据的机器学习过程中能发挥更大的优势. k-NN算法简单有效, 易于实现, 但缺点是需要计算预测样本与所有训练集样本之间的距离, 这一过程比较耗时. SVM算法的运行时间短、效率高, 更适用于小数据量的机器学习过程.

      图  1  (a) 定向构造的训练集示例; (b) DNNs预测准确率及损失随迭代次数的变化; (c) DNNs预测的(110)取向的PZT52/48相图

      Figure 1.  (a) Constructed training set example; (b) the accuracy and loss of DNNs as a function of the number of iterations; (c) the temperature-misfit strain phase diagram of (110) oriented PZT52/48 thin film obtained by DNNs classification.

      DNNs一般由输入层、隐藏层和输出层组成. 虽然Hornik等[32]证明隐藏层的神经元只要够多, 多层前馈网络就可以达到任意所需精度, 但是迭代时间会随着神经元个数的增加而增加, 且过多的神经元会产生过拟合问题, 因此如何设置隐藏层神经元的个数仍然亟待解决. 本文在隐藏层的第1和第2层中分别采用了300和100个神经元, 这不仅达到了所需精度, 而且避免了过拟合问题. 具体研究了DNNs的模型训练过程, 图1(b)展示了DNNs预测准确率及损失随迭代次数的变化, 通过观察验证集准确率val_acc, 准确率acc, 验证集损失val_loss以及损失loss, 可以判断该神经网络模型是否产生过拟合. 图1(b)显示val_acc和acc稳定上升且在第14次迭代时分别达到了0.988和0.993, 同时val_loss和loss也平稳下降, 这意味着该神经网络模型没有发生“过拟合”, 达到了预期效果. 通过前面的分析已知, 这是一个8分类的问题, 而输出层神经元个数的选取一般取决于分类的总数, 因此最终输出层的神经元个数设定为8. 通过DNNs方法预测结果输出只有0, 1, 2, 4, 6, 7, 如图1(c)所示.

    • 由于相结构的类型取决于薄膜的晶体结构, 所以都需要在材料的晶体坐标系下进行判定. 表1为不同取向下相的极化分量的特征.

      相结构全局坐标晶体坐标
      (001)顺电p${P_1} = {P_2} = {P_3} = 0$${P_1} = {P_2} = {P_3} = 0$
      四方T${P_1} = {P_2} = 0, {P_3} \ne 0$${P_1} = {P_2} = 0, {P_3} \ne 0$
      单斜M${P_1} = {P_2} \ne 0, {P_3} \ne 0$${P_1} = {P_2} \ne 0, {P_3} \ne 0$
      正交O${P_1} = {P_2} \ne 0, {P_3} = 0$${P_1} = {P_2} \ne 0, {P_3} = 0$
      (110)顺电p${P'_1} = {P'_2} = {P'_3} = 0$${P_1} = {P_2} = {P_3} = 0$
      正交O${P'_1} = {P'_2} = 0, {P'_3}\ne 0$${P_1} = {P_2} \ne 0, {P_3} = 0$
      单斜MB${P'_1} < {P'_{\rm{3} } } {\rm{/} }\sqrt {\rm{2} }, {P'_{\rm{2} } } = 0$${P_1} = {P_2} > {P_3}$
      单斜MA${P'_1} > {P'_{\rm{2} } } {\rm{/} }\sqrt {\rm{2} }, {P'_3} = 0$${P_1} = {P_2} < {P_3}$
      四方T${P'_1} \ne {\rm{0 } },{P'_{\rm{2} } } = 0, {P'_3} = 0$$ {P}_{1}{} = {P}_{2}=0, {P}_{3}\ne \rm{0}$
      (111)顺电p${P''_1}= {P''_2} = {P''_3} = 0$${P_1} = {P_2} = {P_3} = 0$
      三方R${P''_1} = {P''_2} = 0, \;{P''_3} \ne 0$${P_1} = {P_2} = {P_3} \ne 0$
      单斜MB${P''_1} = 0, {P''_2} \ne 0, {P''_3} \ne 0$${P_1} = {P_2} > {P_3} \ne {\rm{0}}$

      表 1  不同取向PZT52/48薄膜相图中出现的相的极化分量的特征

      Table 1.  Polarization components of the different phases occurring in strain-temperature phase diagrams of (001), (110), and (111) oriented PZT52/48 films.

      图2可以看出, (001)取向生长的单畴PZT52/48铁电薄膜主要存在的是面内极化分量相等的对称相, 这是由于沿(001)面生长的铁电薄膜, 其所受晶格失配应变是面内双轴应变, 在薄膜的接触面处产生面内等效二维夹持作用, 最终形成面内极化分量相等的对称相. 在高温下, (001)取向单畴薄膜的相结构表现为顺电相. 在室温附近, (001)取向单畴薄膜的相结构发生了两次相变: T-M-O, 且T-MM-O为二级相变, 这是因为极化在相变点是连续变化(图3(a)). 当薄膜受到较大的压应变作用时, 会形成一个稳定的四方T 相; 反之, 当薄膜受到较大的拉应变作用时, 会形成一个稳定的正交 O 相. 因此, 在压应变作用下, (001)取向单畴PZT52/48薄膜将产生垂直于薄膜方向的变形; 而在拉应变作用下, 将会产生一个平面内变形. 对于(110)取向, 从相的分布看, (110)取向相图中相是(001)取向相图中相位置的左右对调的结果, 例如, O相存在于压应变, 而T相存在于拉应变区域, 这正好与(001)取向相图相反, 中间区域为单斜相MAMB, 三斜Tr相出现在MAMB的中间靠近居里点Tc的区域, 其原因是尽管在全局坐标系中(110)面受到的是等方双轴应变, 但是在材料自身晶体学局部晶体坐标系中, 这种双轴应变在晶胞轴上效果并不相同, 即${x'_1} = \left[ {{\rm{001}}} \right]$${x'_2} = \left[ {{{1{\bar 1}0}}} \right]$并不等价, 其中作用在${x'_2} = \left[ {{{1{\bar 1}0}}} \right]$上的应变转移到晶轴$\left[ {{\rm{100}}} \right]$$[{{0{\bar 1}0}}]$上要缩小1/$\sqrt {\rm{2}} $. 这些相的种类与(110)取向的PbTiO3薄膜的应变-温度相图是一致的[22], 即对于(110)取向薄膜来说, 从压应变到拉应变分别经历了O-MB-Tr-MA-T的相转变. 值得注意的是, MB-MA的相变为一级相变级相变, 其余相变均为二级相变. 此外, Angsten 等[17] 在采用第一性原理方法计算(110)取向PbTiO3薄膜相结构的过程中, 也发现了与本文计算结果相同的相结构, 一定程度上证明了本文计算结果的正确性. 相比较(001)和(110)取向, (111)取向的相图要简单得多, 只有三方R相和单斜MB两个铁电相, 这是由于(111)取向具有高的空间对称性所导致的, 实验上已经观察到(111)取向PZT52/48薄膜室温存在三方相[33].

      图  2  (a), (c), (e)分别为(001), (110), (111)取向薄膜可能存在相的结构示意图; (b), (d), (f)分别为(001), (110), (111)取向PZT52/48薄膜的相图, 其中粗线表示一级相变, 细线表示二级相变

      Figure 2.  Schematic diagrams of phase structures for (001) (a), (110) (c) and (111) (e) oriented ferroelectric PZT52/48 films; temperature-strain phase diagrams of (001) (b), (110) (d) and (111) (f) oriented PZT52/48 films. Thick and thin lines denote the first order and second order transitions, respectively.

      图  3  (a) (001), (b) (110)和(c) (111)取向PZT54/48薄膜的室温极化随应变的变化

      Figure 3.  Strain dependent polarization of (a) (001), (b) (110), (c) (111) oriented PZT52/48 films at room temperature

      图3为不同取向PZT52/48薄膜的室温极化随应变变化的关系图. 对于(001)取向单畴PZT52/48薄膜, 随着压应变的逐渐增加, 薄膜的面外极化P3逐渐增加, 面内极化分量P1 = P2逐渐减小; 随着拉应变的逐渐增加, 面内极化P1 = P2逐渐增加, 面外极化分量P3逐渐减小; 且从拉应变到压应变, 经历T-M-O两个相变, T-MM-O为二级相变, 因为极化在两个相变点附近连续变化(图3(a)). 对于(110)取向, 应变由压应变转化为拉应变的过程中, 薄膜经历了MB-MA相变, 且为一级相变, 因为极化在相变点附近是不连续变化的(图3(b)). 对于(111)取向, 在压应变到拉应变的变化过程中, 薄膜经历R-MB一级相变, 因为极化在相变点附近不连续变化(图3(c)). 对比发现, 在相同压应变下, (111)取向的面外极化值大于(001)取向和(110)取向的面外极化值, 这与实验结果也是一致的[33]. 通过上述分析可以看出, 应变可以调控不同取向单畴PZT52/48薄膜的极化分量, 并能使铁电材料具有较好的面内、面外极化值. 其主要原因是: 应变致使薄膜内部晶体发生变形, 导致晶体内部电荷中心发生偏移, 偏移的大小和方向取决于应变的大小和方向, 从而导致晶体内部极化发生改变, 且晶体内部极化的改变也将会引起介电性能的变化.

      图4为不同取向PZT52/48薄膜的介电性能随应变变化的关系图. 对于(001)取向PZT52/48薄膜来说(图4(a)), 平面内介电系数${\varepsilon _{{\rm{11}}}} = {\varepsilon _{{\rm{22}}}}$T-M相变点具有峰值, 平面外介电系数${\varepsilon _{{\rm{33}}}}$M-O相变点处具有峰值. 由于都是二级相变, 峰值在相变点两侧都异常大, 这是因为介电系数与极化成负相关, 在二级相变点附近, 极化连续变化为零. 对于(110)取向, 平面外介电系数${\varepsilon '_{{\rm{33}}}}$MA-MB一级相变点附近有不连续的有限值突变, 且峰值出现在MA-MB相变点的右侧, 这是由于右侧的面外极化较小, 且面外介电性能与面外极化成负相关的缘故. 平面内介电系数${\varepsilon '_{{\rm{22}}}}$峰值出现在一级MA-MB相变的左侧(左侧${P'_{\rm{2}}}$较小), 但是平面内介电系数${\varepsilon '_{{\rm{11}}}}$最大值不出现在一级相变MA-MB处, 而是在最大压应变处, 这是因为在最大压应变处, 面内极化${P'_1}$最小, MA-MB相变右侧拉应变区域平面内介电系数${\varepsilon '_{{\rm{11}}}}$${\varepsilon '_{{\rm{22}}}}$具有较好的介电稳定性(因为在拉应变面区域内, 面内极化随应变的变化比较平缓). 对于(111)取向, 介电系数同样在一级R-MB相变点附近发生不连续突变, 由于平面外极化随应变的变化比较平缓, 因此平面外介电系数${\varepsilon ''_{{\rm{33}}}}$在应变范围内变化也比较平缓, 即对应变不敏感, 且平面外介电系数${\varepsilon ''_{{\rm{33}}}}$峰值出现在R-MB一级相变点右侧(因为右侧平面外极化较小), 而平面内介电系数${\varepsilon ''_{{\rm{11}}}}$${\varepsilon ''_{{\rm{22}}}}$峰值出现在R-MB一级相变点左侧(左侧平面内极化较小). 由图4可以看出, (001)取向PZT52/48薄膜的介电最大, (110)取向次之, (111)取向最小. 不同晶体取向对于相同铁电材料的介电性能具有较大影响, 尤其对于介电系数的稳定性、峰值大小和位置的影响较为显著. (111)取向的面外介电系数的峰值较(001)和(110)取向的值要小, 但对应变最不敏感. 因此, 可以采用不同的晶体取向来设计特定需求的电容器件.

      图  4  在室温下, (a) (001), (b) (110)和(c) (111)取向PZT52/48薄膜的介电系数随应变的变化

      Figure 4.  Strain dependent dielectric coefficients of (a) (001), (b) (110) and (c) (111) oriented PZT52/48 films at room temperature.

    • 对于受基底夹持的单晶单畴铁电薄膜, 晶体取向和应变对其物理性能具有显著影响. 本文通过建立不同取向的单晶单畴铁电薄膜的热力学模型, 分析了(001), (110), (111)取向下PZT52/48的温度-应变相图以及介电性能. 研究发现, 应变和晶体取向很大程度上会改变薄膜的空间对称性, 导致复杂的相出现, 如(110)取向的薄膜出现了复杂的低对称相三斜相, 并且随着面内应变的改变发生相变, 不同的相变将会导致物理性能的巨大变化. (111)取向的薄膜面外极化最大, 介电性能最小, 且随应变变化最稳定, 峰值出现在一级相变MB-MA相变的右边; (001)取向的面外极化最小, 介电最大且随应变变化最不稳定, 峰值出现在二级相变M-O处. 因此, 可以制备不同取向的铁电薄膜, 通过调控应变使介电系数和极化性能处于稳定或者较大的峰值状态, 这对设计对不同工作环境和运行有特殊要求的微纳器件具有十分重要的理论指导意义. 最近的研究发现, 薄膜取向和应变对电卡效应也有显著影响[34,35], 因此本文工作对探索不同取向的薄膜的电卡性能实验和理论研究也具有参考价值.

    • $\begin{split}\small F =\;& \alpha _1^*\left( {P_1^2 + P_2^2} \right) + \alpha _3^*P_3^2 + \alpha _{11}^*\left( {P_1^4 + P_2^4} \right) + \alpha _{33}^*P_3^4 + \alpha _{12}^*P_1^2P_2^2 + \alpha _{13}^*\left( {P_1^2 + P_2^2} \right)P_3^2 \\ & + {\alpha _{111}}\left( {P_1^6 + P_2^6 + P_3^6} \right) + {\alpha _{112}}\left[ {P_1^4\left( {P_2^2 + P_3^2} \right) + P_2^4\left( {P_1^2 + P_3^2} \right) + P_3^4\left( {P_1^2 + P_2^2} \right)} \right] \\ & + {\alpha _{123}}P_1^2P_2^2P_3^2 + {\alpha _{1111}}\left( {P_1^8 + P_2^8 + P_3^8} \right) + {\alpha _{1112}}\left[ {P_1^6\left( {P_2^2 + P_3^2} \right) + P_2^6\left( {P_1^2 + P_3^2} \right) + P_3^6\left( {P_1^2 + P_2^2} \right)} \right] \\ & + {\alpha _{1122}}\left( {P_1^4P_2^4 + P_1^4P_3^4 + P_2^4P_3^4} \right) + {\alpha _{1123}}\left( {P_1^4P_2^2P_3^2 + P_2^4P_1^2P_3^2 + P_3^4P_1^2P_2^2} \right) + \frac{{u_{\rm{m}}^{\rm{2}}}}{{{s_{11}} + {s_{12}}}} \\ & - {E_1}{P_1} - {E_2}{P_2} - {E_3}{P_3} , \end{split}\tag{A1} $

      $ \small\alpha _1^* = {\alpha _1} - \frac{{{Q_{11}} + {Q_{12}}}}{{{s_{11}} + {s_{12}}}}{u_{\rm{m}}} ,\tag{A2}$

      $\small\alpha _3^* = {\alpha _1} - \frac{{2{Q_{12}}}}{{{s_{11}} + {s_{12}}}}{u_{\rm{m}}} ,\tag{A3}$

      $\small\alpha _{11}^* = {\alpha _{11}} + \frac{{\left[ {\left( {Q_{11}^2 + Q_{12}^2} \right){s_{11}} - 2{Q_{11}}{Q_{12}}{s_{12}}} \right]}}{{2(s_{11}^2 - s_{12}^2)}} ,\tag{A4}$

      $\small a_{33}^* = {a_{11}} + \frac{{Q_{12}^2}}{{{s_{11}} + {s_{12}}}} ,\tag{A5}$

      $\small\alpha _{12}^* = {\alpha _{12}} - \frac{{\left[ {\left( {Q_{11}^2 \!+\! Q_{12}^2} \right){s_{12}} \!-\! 2{Q_{11}}{Q_{12}}{s_{11}}} \right]}}{{s_{11}^2 - s_{12}^2}} + \frac{{Q_{44}^2}}{{2{s_{44}}}} ,\tag{A6}$

      $\small\alpha _{13}^* = {\alpha _{12}} + \frac{{{Q_{12}}\left( {{Q_{11}} + {Q_{12}}} \right)}}{{{s_{11}} + {s_{12}}}} .\tag{A7}$

    • $\begin{split}\small F^\prime = \;&a_1^*P_1^{\prime2} + a_2^*P_2^{\prime2} + a_3^*P_3^{\prime2} + a_{11}^*P_1^{\prime4} + a_{22}^*P_2^{\prime4} + a_{33}^*P_3^{\prime4} + a_{12}^*P_1^{\prime2}P_2^{\prime2} + a_{13}^*P_1^{\prime2}P_3^{\prime2} + a_{23}^*P_2^{\prime2}P_3^{\prime2} + {a_{111}}P_1^{\prime6}\\ & + \frac{1}{4}({a_{111}} + {a_{112}})(P_2^{\prime6} + P_3^{\prime6}) + {a_{112}}P_1^{\prime4}(P_2^{\prime2} + P_3^{\prime2}) + \frac{1}{4}(2{a_{112}} + {a_{123}})P_1^{\prime2}(P_2^{\prime4} + P_3^{\prime4}) \\ &+ \frac{1}{4}(15{a_{111}} - {a_{112}})P_2^{\prime2}P_3^{\prime2}(P_2^{\prime2} + P_3^{\prime2}) + \frac{1}{2}(6{a_{112}} - {a_{123}})P_1^{\prime2}P_2^{\prime2}P_3^{\prime2} \\ & + \frac{{(6{s_{11}} - 6{s_{12}} + {s_{44}})u_{\rm{m}}^{\rm{2}}}}{{4({s_{11}} - {s_{12}})({s_{11}} + 2{s_{12}}) + 2{s_{11}}{s_{44}}}}, \end{split}\tag{B1} $

      其中

      $\small a_1^* = {a_1} - {u_{\rm{m}}}\frac{{2({Q_{11}} + 2{Q_{12}})({s_{11}} - {s_{12}}) + {Q_{11}}{s_{44}}}}{{2({s_{11}} - {s_{12}})({s_{11}} + 2{s_{12}}) + {s_{11}}{s_{44}}}},\tag{B2}$

      $\small a_2^* = {a_1} - {u_{\rm{m}}}\frac{{(2{Q_{11}} + 4{Q_{12}} + {Q_{44}})({s_{11}} - {s_{12}}) + {Q_{12}}{s_{44}}}}{{2({s_{11}} - {s_{12}})({s_{11}} + 2{s_{12}}) + {s_{11}}{s_{44}}}},\tag{B3}$

      $\small a_3^* = {a_1} - {u_{\rm{m}}}\frac{{(2{Q_{11}} + 4{Q_{12}} - {Q_{44}})({s_{11}} - {s_{12}}) + {Q_{12}}{s_{44}}}}{{2({s_{11}} - {s_{12}})({s_{11}} + 2{s_{12}}) + {s_{11}}{s_{44}}}},\tag{B4}$

      $\small a_{11}^* = {a_{11}} + \frac{{4Q_{12}^2{s_{11}} - 8{Q_{11}}{Q_{12}}{s_{12}} + Q_{11}^2(2{s_{11}} + 2{s_{12}} + {s_{44}})}}{{4({s_{11}} - {s_{12}})({s_{11}} + 2{s_{12}}) + 2{s_{11}}{s_{44}}}},\tag{B5}$

      $\small \begin{split} a_{22}^* =\;& \frac{1}{4}(2{a_{11}} + {a_{12}}) + \frac{1}{{16({s_{11}} - {s_{12}})({s_{11}} + 2{s_{12}}) + 8{s_{11}}{s_{44}}}}\left[ {(4Q_{11}^2 + Q_{44}^2 + 4{Q_{11}}{Q_{44}}){s_{11}}} \right.\\ &{\left. { + 8{Q_{11}}{Q_{12}}({s_{11}} - 2{s_{12}}) + 4{Q_{12}}{Q_{44}}({s_{11}} - 2{s_{1{\rm{2}}}}) + 4Q_{12}^2(3{s_{11}} - 2{s_{12}} + {s_{44}})} \right],} \end{split}\tag{B6} $

      $\small \begin{split} a_{33}^* =\;& \frac{1}{4}(2{a_{11}} + {a_{12}}) + \frac{1}{{16({s_{11}} - {s_{12}})({s_{11}} + 2{s_{12}}) + 8{s_{11}}{s_{44}}}}\left[ {(4Q_{11}^2 + Q_{44}^2 - 4{Q_{12}}{Q_{44}}} \right.\\ &{\left. { + 8{Q_{11}}{Q_{12}} - 4{Q_{11}}{Q_{44}}){s_{11}} + 8({Q_{12}}{Q_{44}} - 2{Q_{11}}{Q_{12}}){s_{12}} + 4Q_{12}^2(3{s_{11}} - 2{s_{12}} + {s_{44}})} \right],} \end{split} \tag{B7}$

      $\small a_{12}^* = {a_{12}} + \frac{{{Q_{12}}[{Q_{44}}{s_{11}} + 2{Q_{12}}({s_{11}} - 2{s_{12}})] - {Q_{11}}[(2{Q_{11}} + {Q_{44}}){s_{12}} - {Q_{12}}(4{s_{11}} + {s_{44}})]}}{{2({s_{11}} - {s_{12}})({s_{11}} + 2{s_{12}}) + {s_{11}}{s_{44}}}} + \frac{{Q_{44}^2}}{{2{s_{44}}}},\tag{B8}$

      $\small a_{13}^* = {a_{12}} + \frac{{{Q_{12}}[2{Q_{12}}({s_{11}} - 2{s_{12}}) - {Q_{44}}{s_{11}}] + {Q_{11}}[({Q_{44}} - 2{Q_{11}}){s_{12}} + {Q_{12}}(4{s_{11}} + {s_{44}})]}}{{2({s_{11}} - {s_{12}})({s_{11}} + 2{s_{12}}) + {s_{11}}{s_{44}}}},\tag{B9}$

      $\small a_{23}^* = 3{a_{11}} - \frac{{{a_{12}}}}{2} + \frac{{(4Q_{11}^2 - Q_{44}^2){s_{11}} + 8{Q_{11}}{Q_{12}}({s_{11}} - 2{s_{12}}) + 4Q_{12}^2(3{s_{11}} - 2{s_{12}} + {s_{44}})}}{{2({s_{11}} - {s_{12}})({s_{11}} + 2{s_{12}}) + {s_{11}}{s_{44}}}}.\tag{B10}$

    • $\small \begin{split} F''=\;& a_1^*(P_1^{\prime\prime2} + P_2^{\prime\prime2}) + a_3^*P_3^{\prime\prime2} + a_{11}^*{(P_1^{\prime\prime2} + P_2^{\prime\prime2})^2} + a_{33}^*P_3^{\prime\prime4} + a_{13}^*P_3^{\prime\prime2}(P_1^{\prime\prime2} + P_2^{\prime\prime2}) \\ &+ {a_{2223}}P_2''P_3'' (P_2^{\prime\prime2} - 3P_1^{\prime\prime2}) + {G^{(6)}} + \frac{{6u_{\rm{m}}^2}}{{4{s_{11}} + 8{s_{12}} + {s_{44}}}}, \end{split}\tag{C1} $

      其中,

      $\small a_1^* = {a_1} - {u_{\rm{m}}}\frac{{4{Q_{11}} + 8{Q_{12}} + {Q_{44}}}}{{4{s_{11}} + 8{s_{12}} + {s_{44}}}}, ~~ a_3^* = {a_1} - {u_{\rm{m}}}\frac{{2(2{Q_{11}} + 4{Q_{12}} - {Q_{44}})}}{{4{s_{11}} + 8{s_{12}} + {s_{44}}}},\tag{C2}$

      $ \small a_{11}^* = \frac{1}{4}(2{a_{11}} + {a_{12}}) + \frac{1}{{24}}\left[ {\frac{{2{{({Q_{11}} - {Q_{12}} + {Q_{44}})}^2}}}{{{s_{11}} - {s_{12}} + {s_{44}}}} + \frac{{{{(4{Q_{11}} + 8{Q_{12}} + {Q_{44}})}^2}}}{{4{s_{11}} + 8{s_{12}} + {s_{44}}}}} \right],\tag{C3}$

      $\small a_{33}^* = \frac{1}{3}({a_{11}} + {a_{12}}) + \frac{{{{(2{Q_{11}} + 4{Q_{12}} - {Q_{44}})}^2}}}{{6(4{s_{11}} + 8{s_{12}} + {s_{44}})}},\tag{C4}$

      $\small a_{13}^* = 2{a_{11}} + \frac{1}{6}\left[ {\frac{{(2{Q_{11}} + 4{Q_{12}} - {Q_{44}})(4{Q_{11}} + 8{Q_{12}} + {Q_{44}})}}{{4{s_{11}} + 8{s_{12}} + {s_{44}}}} + \frac{{{{(2{Q_{11}} - 2{Q_{12}} - {Q_{44}})}^2}}}{{{s_{11}} - {s_{12}} + {s_{44}}}}} \right],\tag{C5}$

      $\small {a_{2223}} = \frac{{\sqrt 2 }}{3}({a_{12}} - 2{a_{11}}) + \frac{{({Q_{11}} - {Q_{12}} + {Q_{44}})(2{Q_{12}} + {Q_{44}} - 2{Q_{11}})}}{{3\sqrt 2 ({s_{11}} - {s_{12}} + {s_{44}})}},\tag{C6}$

      $\small \begin{split} {G^{(6)}} =\;& \frac{1}{{108}}\{ 27P_1^{\prime\prime6}({a_{111}} + {a_{112}}) + 12P_2^{\prime\prime2}P_3^{\prime\prime4}(15{a_{111}} + 6{a_{112}} - {a_{123}}) + 9P_2^{\prime\prime4}P_3^{\prime\prime2}(30{a_{111}} + {a_{123}}) \\ & - 4\sqrt 2 P_2^{\prime\prime3}P_3^{\prime\prime3}(30{a_{111}} - 12{a_{112}} + {a_{123}}) + 6\sqrt 2 P_2^{\prime\prime5}P_3^{\prime\prime}( - 15{a_{111}} + 3{a_{112}} + {a_{123}}) \\ & + 4P_3^{\prime\prime6}(3{a_{111}} + 6{a_{112}} + {a_{123}}) + P_2^{\prime\prime6}(33{a_{111}} + 21{a_{112}} + 2{a_{123}}) \\ & + 3P_1^{\prime\prime2}[P_2^{\prime\prime4}(15{a_{111}} + 39{a_{112}} - 4{a_{123}}) + 4\sqrt 2 P_2^{\prime\prime3}P_3^{\prime\prime}(15{a_{111}} - 3{a_{112}} - {a_{123}}) \\ & + 4P_3^{\prime\prime4}(15{a_{111}} + 6{a_{112}} - {a_{123}}) + 6P_2^{\prime\prime2}P_3^{\prime\prime2}(30{a_{111}} + {a_{123}}) \\ & + 4\sqrt 2 P_2'' P_3^{\prime\prime3}(30{a_{111}} - 12{a_{112}} + {a_{123}})] + 9P_1^{\prime\prime4}[2\sqrt 2 P_2'' P_3'' (15{a_{111}} - 3{a_{112}} - {a_{123}}) \\ & + P_3^{\prime\prime2}(30{a_{111}} + {a_{123}}) + P_2^{\prime\prime2}(15{a_{111}} + 3{a_{112}} + 2{a_{123}})]\} . \end{split} \tag{C7}$

参考文献 (35)

目录

    /

    返回文章
    返回