搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切变稀液滴撞击不同浸润性壁面的数值模拟研究

沈学峰 曹宇 王军锋 刘海龙

引用本文:
Citation:

剪切变稀液滴撞击不同浸润性壁面的数值模拟研究

沈学峰, 曹宇, 王军锋, 刘海龙

Numerical simulation of shear-thinning droplet impact on surfaces with different wettability

Shen Xue-Feng, Cao Yu, Wang Jun-Feng, Liu Hai-Long
PDF
HTML
导出引用
  • 基于有限元法, 采用水平集方法捕捉相界面的移动, 构建了液滴撞击固体壁面的数值模型. 通过修正的幂律模型描述流体的非牛顿剪切变稀特性, 探讨了剪切变稀特性对液滴撞击固体壁面后铺展行为的影响, 分析了撞击不同浸润性壁面时剪切变稀特性对液滴撞击壁面行为的影响差异. 研究结果表明: 随着幂律指数m的减小, 液滴撞击过程中的黏性耗散减小, 液滴的形貌变化及无量纲参数变化更为显著. 接触角为55°的情况下: 当m降低至0.85时, 液滴铺展过程中开始出现显著区别于牛顿流体液滴的振荡现象; 当m降低至0.80时, 液滴在回缩过程中会出现中心液膜断裂的情况. 接触角为100°时, 剪切变稀液滴均会出现振荡行为, 振荡幅度随着m的减小而增大. 接触角为160°时, 牛顿流体液滴与剪切变稀液滴均会在回缩过程中弹起, 但剪切变稀液滴的弹起速度更快. 此外, 基于数值计算结果, 本文提出了接触角为55°情况下剪切变稀液滴撞击壁面后的最大无量纲铺展直径预测模型.
    Controlling impact dynamics of droplets on solid surfaces is a significant problem in a variety of applications, such as inkjet printing, spray cooling and coating and so on. Most of fluids used in industries always contain various kinds of additives such as surfactants, polymers and particles. Therefore, these fluids exhibit non-Newtonian behaviors, for instance, yield-stress, viscoelastic, shear-thickening and shear-thinning. The impact dynamics of Newtonian droplets on solid surfaces has been extensively investigated. However, the number of researches about fluids with non-Newtonian properties is comparatively very small. In this work, we employ the finite element scheme coupled with level set method to simulate the impact process of droplets on solid surfaces. The numerical simulation models the presence of shear-thinning viscosity by using the truncated power-law rheological model. We first conduct a mesh convergence study and verify the numerical model. The simulation results are found to be in good agreement with experimental data in the literature. By performing extensive numerical simulations and varying the rheological parameters and surface wettabilities, the influences of these parameters on the impact dynamics are evaluated, and the dominant effects that govern the spreading and receding process are determined. The simulation results show that for the case of droplet impacting on surface with contact angle θ = 55°, the spreading is stronger with power-law index decreasing as evidenced by larger shape deformation and faster interface moving speed. As power-law index decreases, we expect the maximum dimensionless diameter to increase and the minimum dimensionless height to decrease during inertial spreading. For the case of droplet with lower power-law index (m = 0.85 and 0.80), which indicates lower viscous dissipation during impact, the dimensionless parameters have significant differences. After first receding, the impacting droplet is not balanced any more and it starts to spread again until its kinetic energy is completely damped by fluid viscous dissipation. For the case of droplet (m = 0.80) impacting on surface, the center breakage can be observed during droplet spreading, which results from the effect of strong shear-thinning property. When a shear-thinning droplet impacts on a surface with contact angle θ = 100°, the oscillation behavior can be observed and the oscillation amplitude increases as power law index decreases. Bouncing phenomenon can be observed when a droplet impacts on surface with contact angle θ = 160°, regardless of rheological property. Finally, we propose an empirical model to predict the maximum dimensionless diameter of shear-thinning droplet impacting on the surface with contact angle θ = 55° as a function of non-Newtonian Reynolds number Ren.
      通信作者: 刘海龙, leo@ujs.edu.cn
    • 基金项目: 国家级-国家自然科学基金(51876086)
      Corresponding author: Liu Hai-Long, leo@ujs.edu.cn
    [1]

    Rioboo R, Tropea C, Marengo M 2001 Atomization Sprays 11 155

    [2]

    荣松, 沈世全, 王天友, 车志钊 2019 物理学报 68 154701Google Scholar

    Rong S, Shen S Q, Wang T Y, Che Z Z 2019 Acta Phys. Sin. 68 154701Google Scholar

    [3]

    杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华 2019 物理学报 68 156101Google Scholar

    Yang Y J, Mei C X, Zhang X D, Wei Y J, Liu S H 2019 Acta Phys. Sin. 68 156101Google Scholar

    [4]

    Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159Google Scholar

    [5]

    Josserand C, Thoroddsen S T 2016 Annu. Rev. Fluid Mech. 48 365Google Scholar

    [6]

    Jung S, Hoath S D, Hutchings I M 2013 Microfluid. Nanofluidics 14 163Google Scholar

    [7]

    Huh H K, Jung S, Seo K W, Lee S J 2015 Microfluid. Nanofluidics 18 1221Google Scholar

    [8]

    Luu L H, Forterre Y 2009 J. Fluid Mech. 632 301Google Scholar

    [9]

    Saïdi A, Martin C, Magnin A 2010 J. Non-Newton. Fluid Mech. 165 596Google Scholar

    [10]

    Boyer F, Sandoval-Nava E, Snoeijer J H, Dijksman J F, Lohse D 2016 Phys. Rev. Fluids 1 013901Google Scholar

    [11]

    German G, Bertola V 2009 J. Phys. Condens. Matter 21 375111Google Scholar

    [12]

    An S M, Lee S Y 2012 Exp. Therm. Fluid Sci. 38 140Google Scholar

    [13]

    An S M, Lee S Y 2012 Exp. Therm. Fluid Sci. 37 37Google Scholar

    [14]

    Andrade R, Skurtys O, Osorio F 2015 J. Food Eng. 157 70Google Scholar

    [15]

    Laan N, de Bruin K G, Bartolo D, Josserand C, Bonn D 2014 Phys. Rev. Appl. 2 044018Google Scholar

    [16]

    刘海龙, 沈学峰, 王睿, 曹宇, 王军锋 2018 力学学报 50 1024Google Scholar

    Liu H L, Shen X F, Wang R, Cao Y, Wang J F 2018 Chin. J. Theor. Appl. Mech. 50 1024Google Scholar

    [17]

    Hou T Y, Lowengrub J S, Shelley M J 2001 J. Comput. Phys. 169 302Google Scholar

    [18]

    Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan Y-J 2001 J. Comput. Phys. 169 708Google Scholar

    [19]

    Yue P, Feng J J, Liu C, Shen J 2004 J. Fluid Mech. 515 293Google Scholar

    [20]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 39 201Google Scholar

    [21]

    Ding H, Spelt P D M 2007 Phys. Rev. E 75 046708Google Scholar

    [22]

    Gunstensen A K, Rothman D H, Zaleski S, Zanetti G 1991 Phys. Rev. A 43 4320Google Scholar

    [23]

    Olsson E, Kreiss G 2005 J. Comput. Phys. 210 225Google Scholar

    [24]

    郑志伟, 李大树, 仇性启, 崔运静 2017 物理学报 66 014704Google Scholar

    Zheng Z W, Li D S, Qiu X Q, Cui Y J 2017 Acta Phys. Sin. 66 014704Google Scholar

    [25]

    李玉杰, 黄军杰, 肖旭斌 2018 物理学报 67 184701Google Scholar

    Li Y J, Huang J J, Xiao X B 2018 Acta Phys. Sin. 67 184701Google Scholar

    [26]

    高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702Google Scholar

    Gao Y J, Jiang H J, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702Google Scholar

    [27]

    韩丁丁, 刘浩然, 刘难生, 丁航 2018 中国科学: 物理学 力学 天文学 48 094705Google Scholar

    Han D D, Liu H R, Liu N S, Ding H 2018 Sci. Sin. Phys. Mech. Astron. 48 094705Google Scholar

    [28]

    Kim E, Baek J 2012 J. Non-Newton. Fluid Mech. 173–174 62

    [29]

    Wang Y, Do-Quang M, Amberg G 2017 J. Non-Newton. Fluid Mech. 243 38Google Scholar

    [30]

    Liu H L, Um M K, Hwang W R 2015 J. Non-Newton. Fluid Mech. 224 40Google Scholar

    [31]

    Bashir S, Rees J M, Zimmerman W B 2014 Int. J. Multiph. Flow 60 40Google Scholar

    [32]

    Chang Q, Zhang M, Bai F, Wu J, Xia Z, Jiao K, Du Q 2013 J. Non-Newton. Fluid Mech. 198 10Google Scholar

    [33]

    Lim C Y, Lam Y C 2014 Microfluid. Nanofluidics 17 131Google Scholar

    [34]

    Lindner A, Bonn D, Meunier J 2000 Phys. Fluids 12 256Google Scholar

    [35]

    Zhang Q, Qian T Z, Wang X P 2016 Phys. Fluids 28 022103Google Scholar

    [36]

    Zhang L, Ku T, Cheng X, Song Y, Zhang D 2018 Microfluid. Nanofluidics 22 47Google Scholar

    [37]

    Jones H 1971 J. Phys. Appl. Phys. 4 1657Google Scholar

    [38]

    Madejski J 1976 Int. J. Heat Mass Transf. 19 1009Google Scholar

    [39]

    Pasandideh-Fard M, Qiao Y M, Chandra S, Mostaghimi J 1996 Phys. Fluids 8 650Google Scholar

    [40]

    Scheller B L, Bousfield D W 1995 AIChE J. 41 1357Google Scholar

    [41]

    Roisman I V 2009 Phys. Fluids 21 052104Google Scholar

  • 图 1  数值模拟计算域设置

    Fig. 1.  Computation domain for numerical simulation.

    图 2  计算域网格剖分

    Fig. 2.  Grid generation of computation domain.

    图 3  本文数值模拟与Lim等[33]相场模拟的结果比较

    Fig. 3.  Comparisons between simulation results in this work and phase-field simulation results[33].

    图 4  本文数值模拟与German等[11]的实验结果比较(左侧为实验结果, 右侧为模拟结果)

    Fig. 4.  Comparisons between numerical simulation in this work and experiment results[11], the left half of each image is obtained from the experiment, while the right half is the snapshots from our simulation.

    图 5  液滴撞击壁面的网格收敛性验证

    Fig. 5.  Mesh convergence study of droplet impact on solid surfaces

    图 6  不同幂律指数流体剪切黏度随剪切速率的变化

    Fig. 6.  Variation of shear viscosity with shear rate at different power-law index.

    图 7  不同幂律指数时无量纲直径随无量纲时间的变化(We = 4.53)

    Fig. 7.  Dimensionless diameter of droplet spread varying with dimensionless time at different power-law index (We = 4.53).

    图 8  不同幂律指数时无量纲高度随无量纲时间的变化(We = 4.53)

    Fig. 8.  Dimensionless height of droplet spread varying with dimensionless time at different power-law index (We = 4.53).

    图 9  不同幂律指数时液滴撞击壁面过程 (a) m = 0.85, Ren = 24.37, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53

    Fig. 9.  Process of droplet impact on surface at different power-law index: (a) m = 0.85, Ren = 24.37, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53.

    图 10  不同幂律指数时无量纲直径随无量纲时间的变化(We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85))

    Fig. 10.  Dimensionless diameter of droplet spread varying with dimensionless time at different power-law index (We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85))

    图 11  不同幂律指数时无量纲高度随无量纲时间的变化(We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85))

    Fig. 11.  Dimensionless height of droplet spread varying with dimensionless time at different power-law index (We = 4.53, Ren = 13.75 (m = 1.00), Ren = 24.37 (m = 0.85)).

    图 12  不同幂律指数时液滴撞击壁面过程 (a) m = 1, Ren = 13.75, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53

    Fig. 12.  Process of droplet impact on surface at different power-law index: (a) m = 1, Ren = 13.75, We = 4.53; (b) m = 0.80, Ren = 29.50, We = 4.53.

    图 13  最大无量纲直径模型预测值与数值计算值对比

    Fig. 13.  Comparison of $ D_{\max}^* $ between model prediction values and simulation data.

    表 1  数值模拟参数设置

    Table 1.  Symbols and constants in numerical simulation

    参数符号/单位数值
    重新初始化参数$\gamma /{\rm{m}} \cdot {{\rm{s}}^{ - 1}}$1
    界面厚度$\varepsilon /\text{μm}$$5 \times {10^{ - 2}}$
    气体密度${\rho _1}/{\rm{kg}} \cdot {{\rm{m}}^{ - {\rm{3}}}}$1.2
    气体黏度${\eta _1}{\rm{/Pa}} \cdot {\rm{s}}$$2 \times {10^{ - 5}}$
    液体密度${\rho _2}/{\rm{kg}} \cdot {{\rm{m}}^{ - {\rm{3}}}}$1000
    液体黏度${\eta _2}{\rm{/Pa}} \cdot {\rm{s}}$$8.9 \times {10^{ - 4}}$
    温度T/℃25
    液滴初始直径${D_0}/{\text{μ} m }$55
    液滴撞击速度uz$/{\rm{m}} \cdot {{\rm{s}}^{ - 1}}$2.45
    接触角$\theta /{(^ \circ })$55
    气液界面张力$\sigma /{\rm{mN}} \cdot {{\rm{m}}^{ - 1}}$72.8
    下载: 导出CSV

    表 2  最大无量纲直径预测模型

    Table 2.  Prediction models of maximum dimensionless factor.

    模型出处方程均方根误差
    Jones[37]$D_{\max }^* = {({\rm{4/3} }Re_{\rm{n} } ^{1/4})^{1/2} }$0.20
    Madejski[38]$D_{\max }^* = Re_{\rm{n} } ^{1/5}$0.31
    Pasandideh-Fard等[39]$D_{\max }^* = 0.5 Re_{\rm{n} } ^{1/4}$0.64
    Scheller和Bousfield[40]$D_{\max }^* = 0.61{(R{e_{\rm{n}}}W{e^{1{\rm{/}}2}}{\rm{)}}^{0.166}}$0.65
    Roisman[41]$D_{\max }^* = 0.87 Re_{\rm{n} } ^{1/5} - {\rm{0} }{\rm{.40} }Re_{\rm{n} }^{2/5}W{e^{ - 1/2} }$0.97
    Luu和Forterre[8]$D_{\max }^* = Re_{\rm{n} } ^{1/(2 m + 3)}$0.44
    Andrade等[14]$D_{\max }^* = 1.28 + 0.071 W{e^{1/4} }Re_{\rm{n} } ^{1/4}$0.43
    本文预测模型$D_{\max }^* = Re_{\rm{n} } ^{0.17} = {\left[ {\rho D_0^mV_0^{2 - m}/k} \right]^{0.17} }$0.06
    下载: 导出CSV
  • [1]

    Rioboo R, Tropea C, Marengo M 2001 Atomization Sprays 11 155

    [2]

    荣松, 沈世全, 王天友, 车志钊 2019 物理学报 68 154701Google Scholar

    Rong S, Shen S Q, Wang T Y, Che Z Z 2019 Acta Phys. Sin. 68 154701Google Scholar

    [3]

    杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华 2019 物理学报 68 156101Google Scholar

    Yang Y J, Mei C X, Zhang X D, Wei Y J, Liu S H 2019 Acta Phys. Sin. 68 156101Google Scholar

    [4]

    Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159Google Scholar

    [5]

    Josserand C, Thoroddsen S T 2016 Annu. Rev. Fluid Mech. 48 365Google Scholar

    [6]

    Jung S, Hoath S D, Hutchings I M 2013 Microfluid. Nanofluidics 14 163Google Scholar

    [7]

    Huh H K, Jung S, Seo K W, Lee S J 2015 Microfluid. Nanofluidics 18 1221Google Scholar

    [8]

    Luu L H, Forterre Y 2009 J. Fluid Mech. 632 301Google Scholar

    [9]

    Saïdi A, Martin C, Magnin A 2010 J. Non-Newton. Fluid Mech. 165 596Google Scholar

    [10]

    Boyer F, Sandoval-Nava E, Snoeijer J H, Dijksman J F, Lohse D 2016 Phys. Rev. Fluids 1 013901Google Scholar

    [11]

    German G, Bertola V 2009 J. Phys. Condens. Matter 21 375111Google Scholar

    [12]

    An S M, Lee S Y 2012 Exp. Therm. Fluid Sci. 38 140Google Scholar

    [13]

    An S M, Lee S Y 2012 Exp. Therm. Fluid Sci. 37 37Google Scholar

    [14]

    Andrade R, Skurtys O, Osorio F 2015 J. Food Eng. 157 70Google Scholar

    [15]

    Laan N, de Bruin K G, Bartolo D, Josserand C, Bonn D 2014 Phys. Rev. Appl. 2 044018Google Scholar

    [16]

    刘海龙, 沈学峰, 王睿, 曹宇, 王军锋 2018 力学学报 50 1024Google Scholar

    Liu H L, Shen X F, Wang R, Cao Y, Wang J F 2018 Chin. J. Theor. Appl. Mech. 50 1024Google Scholar

    [17]

    Hou T Y, Lowengrub J S, Shelley M J 2001 J. Comput. Phys. 169 302Google Scholar

    [18]

    Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Han J, Nas S, Jan Y-J 2001 J. Comput. Phys. 169 708Google Scholar

    [19]

    Yue P, Feng J J, Liu C, Shen J 2004 J. Fluid Mech. 515 293Google Scholar

    [20]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 39 201Google Scholar

    [21]

    Ding H, Spelt P D M 2007 Phys. Rev. E 75 046708Google Scholar

    [22]

    Gunstensen A K, Rothman D H, Zaleski S, Zanetti G 1991 Phys. Rev. A 43 4320Google Scholar

    [23]

    Olsson E, Kreiss G 2005 J. Comput. Phys. 210 225Google Scholar

    [24]

    郑志伟, 李大树, 仇性启, 崔运静 2017 物理学报 66 014704Google Scholar

    Zheng Z W, Li D S, Qiu X Q, Cui Y J 2017 Acta Phys. Sin. 66 014704Google Scholar

    [25]

    李玉杰, 黄军杰, 肖旭斌 2018 物理学报 67 184701Google Scholar

    Li Y J, Huang J J, Xiao X B 2018 Acta Phys. Sin. 67 184701Google Scholar

    [26]

    高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702Google Scholar

    Gao Y J, Jiang H J, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702Google Scholar

    [27]

    韩丁丁, 刘浩然, 刘难生, 丁航 2018 中国科学: 物理学 力学 天文学 48 094705Google Scholar

    Han D D, Liu H R, Liu N S, Ding H 2018 Sci. Sin. Phys. Mech. Astron. 48 094705Google Scholar

    [28]

    Kim E, Baek J 2012 J. Non-Newton. Fluid Mech. 173–174 62

    [29]

    Wang Y, Do-Quang M, Amberg G 2017 J. Non-Newton. Fluid Mech. 243 38Google Scholar

    [30]

    Liu H L, Um M K, Hwang W R 2015 J. Non-Newton. Fluid Mech. 224 40Google Scholar

    [31]

    Bashir S, Rees J M, Zimmerman W B 2014 Int. J. Multiph. Flow 60 40Google Scholar

    [32]

    Chang Q, Zhang M, Bai F, Wu J, Xia Z, Jiao K, Du Q 2013 J. Non-Newton. Fluid Mech. 198 10Google Scholar

    [33]

    Lim C Y, Lam Y C 2014 Microfluid. Nanofluidics 17 131Google Scholar

    [34]

    Lindner A, Bonn D, Meunier J 2000 Phys. Fluids 12 256Google Scholar

    [35]

    Zhang Q, Qian T Z, Wang X P 2016 Phys. Fluids 28 022103Google Scholar

    [36]

    Zhang L, Ku T, Cheng X, Song Y, Zhang D 2018 Microfluid. Nanofluidics 22 47Google Scholar

    [37]

    Jones H 1971 J. Phys. Appl. Phys. 4 1657Google Scholar

    [38]

    Madejski J 1976 Int. J. Heat Mass Transf. 19 1009Google Scholar

    [39]

    Pasandideh-Fard M, Qiao Y M, Chandra S, Mostaghimi J 1996 Phys. Fluids 8 650Google Scholar

    [40]

    Scheller B L, Bousfield D W 1995 AIChE J. 41 1357Google Scholar

    [41]

    Roisman I V 2009 Phys. Fluids 21 052104Google Scholar

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 郑所生, 黄瑶, 邹鲲, 彭倚天. 刮膜蒸发器内非牛顿流体流场特性数值模拟. 物理学报, 2022, 71(5): 054701. doi: 10.7498/aps.71.20211921
    [3] 郑所生, 黄瑶, 邹鲲, 彭倚天. 刮膜蒸发器内非牛顿流体流场特性数值模拟. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211921
    [4] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟. 物理学报, 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [5] 赵可, 佘阳梓, 蒋彦龙, 秦静, 张振豪. 液氮滴撞击壁面相变行为的数值研究. 物理学报, 2019, 68(24): 244401. doi: 10.7498/aps.68.20190945
    [6] 荣松, 沈世全, 王天友, 车志钊. 液滴撞击加热壁面雾化弹起模式及驻留时间. 物理学报, 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [7] 戴卿, 项楠, 程洁, 倪中华. 圆截面直流道中微粒黏弹性聚焦机理研究. 物理学报, 2015, 64(15): 154703. doi: 10.7498/aps.64.154703
    [8] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究. 物理学报, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [9] 戴剑锋, 樊学萍, 蒙波, 刘骥飞. 单液滴撞击倾斜液膜飞溅过程的耦合Level Set-VOF模拟. 物理学报, 2015, 64(9): 094704. doi: 10.7498/aps.64.094704
    [10] 沈胜强, 张洁珊, 梁刚涛. 液滴撞击加热壁面传热实验研究. 物理学报, 2015, 64(13): 134704. doi: 10.7498/aps.64.134704
    [11] 郭亚丽, 魏兰, 沈胜强, 陈桂影. 双液滴撞击平面液膜的流动与传热特性. 物理学报, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [12] 梁刚涛, 沈胜强, 郭亚丽, 陈觉先, 于欢, 李熠桥. 实验观测液滴撞击倾斜表面液膜的特殊现象. 物理学报, 2013, 62(8): 084707. doi: 10.7498/aps.62.084707
    [13] 梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析. 物理学报, 2013, 62(2): 024705. doi: 10.7498/aps.62.024705
    [14] 许少锋, 汪久根. 微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟. 物理学报, 2013, 62(12): 124701. doi: 10.7498/aps.62.124701
    [15] 梁刚涛, 郭亚丽, 沈胜强. 液滴低速撞击润湿球面现象观测分析. 物理学报, 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [16] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [17] 计时鸣, 翁晓星, 谭大鹏. 基于水平集方法二维模型的软性磨粒两相流流场特性分析方法. 物理学报, 2012, 61(1): 010205. doi: 10.7498/aps.61.010205
    [18] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [19] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算. 物理学报, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [20] 郭永存, 曾亿山, 卢德唐. 地层静温预测的非牛顿流体数学模型. 物理学报, 2005, 54(2): 802-806. doi: 10.7498/aps.54.802
计量
  • 文章访问数:  9593
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-02
  • 修回日期:  2019-12-31
  • 刊出日期:  2020-03-20

/

返回文章
返回