搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同样品温度下聚焦透镜到样品表面距离对激光诱导铜击穿光谱的影响

杨雪 李苏宇 姜远飞 陈安民 金明星

引用本文:
Citation:

不同样品温度下聚焦透镜到样品表面距离对激光诱导铜击穿光谱的影响

杨雪, 李苏宇, 姜远飞, 陈安民, 金明星

Influence of distance between focusing lens and sample surface on laser-induced breakdown spectroscopy of brass at different sample temperatures

Yang Xue, Li Su-Yu, Jiang Yuan-Fei, Chen An-Min, Jin Ming-Xing
PDF
HTML
导出引用
  • 研究了不同温度下聚焦透镜到样品表面距离对激光诱导击穿光谱(laser-induced breakdown spectroscopy, LIBS)强度的影响, 使用Nd:YAG脉冲激光激发样品并产生等离子体, 探测的等离子体发射的光谱线为Cu (I) 510.55 nm, Cu (I) 515.32 nm和Cu (I) 521.82 nm. 使用透镜的焦距为200 mm, 测量的聚焦透镜到样品表面距离的范围为170—200 mm, 样品温度从25 ℃升高到270 ℃, 激光能量为26 mJ. 总体上, 升高样品温度能有效地提高LIBS光谱的辐射强度. 在25 ℃和100 ℃时, 光谱强度随着聚焦透镜到样品表面距离的增加而单调增加; 在样品温度更高(150, 200, 250和270 ℃)时, 光谱强度随着距离的增加出现先升高而后又降低的变化. 同时, 在样品接近焦点附近, 随着样品温度的升高, LIBS光谱强度的变化不明显, 还可能出现光谱强度随着样品温度升高而降低的情况, 这在通过升高样品温度来提高LIBS光谱强度中特别值得我们注意. 为了更进一步了解这两个条件对LIBS的影响, 计算了等离子体温度和电子密度, 发现等离子体温度和电子密度的变化与光谱强度的变化几乎一致, 更高样品温度下产生的等离子体温度和电子密度更高.
    From previously published results of laser-induced breakdown spectroscopy, one can know that the change in the distance from the sample surface to the focusing lens has an important influence on the interaction between the sample and the laser, and increasing the sample temperature can enhance the coupling between the laser and the sample. However, almost no work has devoted to directly studying the influence of the distance between focusing lens and sample surface on the spectral intensity of laser-induced breakdown spectroscopy under different sample temperatures. In this paper, we investigate experimentally this subject. An Nd:YAG laser is used to excite the sample to produce the plasma. The detected spectral lines are Cu (I) 510.55 nm, Cu (I) 515.32 nm, and Cu (I) 521.82 nm. The focal length of focusing lens is 200 mm. The distance between focusing lens and sample surface ranges from 170 mm to 200 mm. The sample is heated from 25 ℃ to 270 ℃, and the laser energy is 26 mJ. In general, the spectral intensity of laser-induced breakdown spectroscopy can be effectively enhanced by increasing the sample temperature. At the sample temperatures of 25 ℃ and 100 ℃, the spectral intensity increases monotonically with the increase of the distance between focusing lens and sample surface; at higher sample temperatures (150, 200, 250, and 270 ℃), the spectral intensity first increases and then decreases with the increase of the distance between focusing lens and sample surface. In addition, near the focal point, with the increase of sample temperature, the increase of the spectral intensity is not obvious, and the spectral intensity decreases with the increase of sample temperature, which is particularly noteworthy in improving the spectral intensity of laser-induced breakdown spectroscopy by increasing sample temperature. In order to further understand the influences of these two conditions on laser-induced breakdown spectroscopy, we also calculate the plasma temperature and electron density, and find that the variation of plasma temperature and electron density are almost the same as that of spectral intensity. The plasma temperature and electron density at higher sample temperature are higher.
      通信作者: 陈安民, amchen@jlu.edu.cn ; 金明星, mxjin@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674128, 11674124)和吉林省科技发展计划(批准号: 20170101063JC)资助的课题.
      Corresponding author: Chen An-Min, amchen@jlu.edu.cn ; Jin Ming-Xing, mxjin@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674128, 11674124) and the Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC).
    [1]

    Wang Z, Dong F, Zhou W 2015 Plasma Sci. Technol. 17 617Google Scholar

    [2]

    Wang Z, Ting B, Yuan, Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419Google Scholar

    [3]

    Wang Z Z, Deguchi Y, Zhang Z Z, Wang Z, Zeng X Y, Yan J J 2016 Front. Phys. 11 114213Google Scholar

    [4]

    朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫 2015 物理学报 64 024212Google Scholar

    Zhu G Z, Guo L B, Hao Z Q, Li C M, Shen M, Li K H, Li X Y, Liu J G, Zeng X Y, Lu Y F 2015 Acta Phys. Sin. 64 024212Google Scholar

    [5]

    Wang Q Q, Liu K, Zhao H, Ge C H, Huang Z W 2012 Front. Phys. 7 701Google Scholar

    [6]

    Hu L, Zhao N, Liu W, Meng D, Fang L, Wang Y, Yu Y, Ma M 2015 Plasma Sci. Technol. 17 699Google Scholar

    [7]

    Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y, Jin M 2016 J. Anal. Atom. Spectrom. 31 497Google Scholar

    [8]

    Li Y, Tian D, Ding Y, Yang G, Liu K, Wang C, Han X 2018 Appl. Spectrosc. Rev. 53 1Google Scholar

    [9]

    Li X, Wang Z, Fu Y, Li Z, Ni W 2015 Plasma Sci. Technol. 17 621Google Scholar

    [10]

    Wang X, Chen A, Sui L, Wang Y, Zhang D, Li S, Jiang Y, Jin M 2018 J. Anal. Atom. Spectrom. 33 168Google Scholar

    [11]

    吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 物理学报 66 054206Google Scholar

    Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206Google Scholar

    [12]

    Lu Y, Zhou Y S, Qiu W, Huang X, Liu L, Jiang L, Silvain J F, Lu Y F 2015 J. Anal. Atom. Spectrom. 30 2303Google Scholar

    [13]

    李百慧, 高勋, 宋超, 林景全 2016 物理学报 65 235201Google Scholar

    Li B H, Gao X, Song C, Lin J Q 2016 Acta Phys. Sin. 65 235201Google Scholar

    [14]

    Li C M, Guo L B, He X N, Hao Z Q, Li X Y, Shen M, Zeng X Y, Lu Y F 2014 J. Anal. Atom. Spectrom. 29 638Google Scholar

    [15]

    Wang Q, Chen A, Zhang D, Wang Y, Sui L, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 073301Google Scholar

    [16]

    Zhou W, Su X, Qian H, Li K, Li X, Yu Y, Ren Z 2013 J. Anal. Atom. Spectrom. 28 702Google Scholar

    [17]

    Liu L, Huang X, Li S, Lu Y, Chen K, Jiang L, Silvain J F, Lu Y F 2015 Opt. Express 23 15047Google Scholar

    [18]

    de Giacomo A, Gaudiuso R, Koral C, Dell'Aglio M, de Pascale O 2013 Anal. Chem. 85 10180Google Scholar

    [19]

    Li C, Hao Z, Zou Z, Zhou R, Li J, Guo L, Li X, Lu Y, Zeng X 2016 Opt. Express 24 7850Google Scholar

    [20]

    Tavassoli S H, Gragossian A 2009 Opt. Laser Technol. 41 481Google Scholar

    [21]

    Sanginés R, Sobral H, Alvarez-Zauco E 2012 Appl. Phys. B 108 867Google Scholar

    [22]

    Sanginés R, Sobral H, Alvarez-Zauco E 2012 Spectrochim. Acta B 68 40Google Scholar

    [23]

    Darbani S M R, Ghezelbash M, Majd A E, Soltanolkotabi M, Saghafifar H 2014 J. Eur. Opt. Soc.-Rapid 9 14058Google Scholar

    [24]

    Hanson C, Phongikaroon S, Scott J R 2014 Spectrochim. Acta B 97 79Google Scholar

    [25]

    Wang Y, Chen A, Jiang Y, Sui L, Wang X, Zhang D, Tian D, Li S, Jin M 2017 Phys. Plasmas 24 013301Google Scholar

    [26]

    Eschlböck-Fuchs S, Haslinger M J, Hinterreiter A, Kolmhofer P, Huber N, Rössler R, Heitz J, Pedarnig J D 2013 Spectrochim. Acta B 87 36Google Scholar

    [27]

    Liu Y, Tong Y, Li S, Wang Y, Chen A, Jin M 2016 Chin. Opt. Lett. 14 123001Google Scholar

    [28]

    Liu Y, Tong Y, Wang Y, Zhang D, Li S, Jiang Y, Chen A, Jin M 2017 Plasma Sci. Technol. 19 125501Google Scholar

    [29]

    Zhang D, Chen A, Wang Q, Wang Y, Qi H, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 083305Google Scholar

    [30]

    Multari R A, Foster L E, Cremers D A, Ferris M J 1996 Appl. Spectrosc. 50 1483Google Scholar

    [31]

    Aguilera J A, Aragón C 2008 Spectrochim. Acta B 63 793Google Scholar

    [32]

    Chen M, Liu Y H, Liu X D, Zhao M W 2012 Laser Phys. Lett. 9 730Google Scholar

    [33]

    Kasperczuk A, Pisarczyk T, Kalal M, Ullschmied J, Krousky E, Masek K, Pfeifer M, Rohlena K, Skala J, Pisarczyk P 2009 Appl. Phys. Lett. 94 081501Google Scholar

    [34]

    Guo J, Shao J, Wang T, Zheng C, Chen A, Jin M 2017 J. Anal. Atom. Spectrom. 32 367Google Scholar

    [35]

    Zhang D, Chen A, Wang X, Wang Y, Sui L, Ke D, Li S, Jiang Y, Jin M 2018 Spectrochim. Acta B 143 71Google Scholar

    [36]

    刘月华, 陈明, 刘向东, 崔清强, 赵明文 2013 物理学报 62 025203Google Scholar

    Liu Y H, Chen M, Liu X D, Cui Q Q, Zhao M W 2013 Acta Phys. Sin. 62 025203Google Scholar

    [37]

    Li X, Wei W, Wu J, Jia S, Qiu A 2013 J. Appl. Phys. 113 243304Google Scholar

    [38]

    Amin S, Bashir S, Anjum S, Akram M, Hayat A, Waheed S, Iftikhar H, Dawood A, Mahmood K 2017 Phys. Plasmas 24 083112Google Scholar

    [39]

    Wang Y, Chen A, Wang Q, Sui L, Ke D, Cao S, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 033302Google Scholar

    [40]

    Tian Y, Xue B, Song J, Lu Y, Li Y, Zheng R 2017 Appl. Phys. Express 10 072401Google Scholar

    [41]

    Wang Y, Chen A, Li S, Ke D, Wang X, Zhang D, Jiang Y, Jin M 2017 AIP Adv. 7 095204Google Scholar

    [42]

    Haq S U, Ahmat L, Mumtaz M, Shakeel H, Mahmood S, Nadeem A 2015 Phys. Plasmas 22 083504Google Scholar

    [43]

    Guo J, Wang T, Shao J, Chen A, Jin M 2018 J. Anal. Atom. Spectrom. 33 2116Google Scholar

    [44]

    Thorstensen J, Foss S E 2012 J. Appl. Phys. 112 103514Google Scholar

    [45]

    赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201Google Scholar

    Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar

    [46]

    杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星 2017 物理学报 66 115201Google Scholar

    Yang D P, Li S Y, Jiang Y F, Chen A M, Jin M X 2017 Acta Phys. Sin. 66 115201Google Scholar

    [47]

    Wang Q, Chen A, Wang Y, Sui L, Li S, Jin M 2018 J. Anal. Atom. Spectrom. 33 1154Google Scholar

    [48]

    Chen A, Jiang Y, Wang T, Shao J, Jin M 2015 Phys. Plasmas 22 033301Google Scholar

    [49]

    NIST Atomic Spectra Database http://physics.nist.gov/PhysRefData/ASD/lines_form.html

    [50]

    Wang J, Fu H, Ni Z, Chen X, He W, Dong F 2015 Plasma Sci. Technol. 17 649Google Scholar

    [51]

    Konjević N, Wiese W 1990 J. Phys. Chem. Ref. Data 19 1307Google Scholar

  • 图 1  不同样品温度下聚焦透镜到样品表面距离对LIBS影响的实验装置示意图

    Fig. 1.  Experimental setup for the influence of the distance between focusing lens and sample surface on LIBS under different sample temperatures.

    图 2  不同温度下LIBS辐射强度的比较, 其中图(b)来自于图(a), 聚焦透镜到样品表面的距离为190 mm、激光能量为26 mJ

    Fig. 2.  Comparison of spectral lines of LIBS under different sample temperatures. Panel (b) is from panel (a). The distance between focusing lens and sample surface is 190 mm. Laser energy is 26 mJ.

    图 3  不同温度下等离子体光谱随着波长和聚焦透镜到样品表面距离的分布(激光能量为26 mJ) (a)样品温度为100 ℃; (b) 样品温度为200 ℃

    Fig. 3.  Distribution of optical emission with the wavelength and the distance between focusing lens and sample surface under 100 ℃ (a) and 200 ℃ (b) sample temperatures. Laser energy is 26 mJ.

    图 4  不同样品温度下Cu (I) 510.55 nm (a)和Cu (I) 521.82 nm (b)光谱峰强度随着聚焦透镜到样品表面距离的变化(激光能量为26 mJ)

    Fig. 4.  Evolution of spectral peak intensities at Cu (I) 510.55 nm (a) and Cu (I) 521.82 nm (b) with the distance between focusing lens and sample surface under different sample temperatures. Laser energy is 26 mJ.

    图 5  典型的Boltzmann图, 其中聚焦透镜到样品表面的距离分别为(a) 175, (b) 180, (c) 185和(d) 195 mm; 样品温度为200 ℃

    Fig. 5.  Typical Boltzmann plots. The distances between focusing lens and sample surface are (a) 175, (b) 180, (c) 185 and (d) 195 mm. Sample temperature is 200 ℃.

    图 6  不同样品温度下等离子体温度随着聚焦透镜到样品表面距离的变化(激光能量为26 mJ)

    Fig. 6.  Evolution of plasma temperature with the distance between focusing lens and sample surface under different sample temperatures. Laser energy is 26 mJ.

    图 7  典型的谱线半高宽($\scriptstyle{\text{Δ}}{\lambda _{{\rm{measured}}}}$)拟合图, 其中聚焦透镜到样品表面的距离分别为(a) 175, (b) 180, (c) 185和(d) 195 mm; 样品温度为200 ℃

    Fig. 7.  Typical Gauss fitting ($\scriptstyle{\text{Δ}}{\lambda _{{\rm{measured}}}}$) for selected distances between focusing lens and sample surface under 200 ℃ sample temperature. The distances are (a) 175, (b) 180, (c) 185 and 195 mm (d).

    图 8  不同样品温度下电子密度随着聚焦透镜到样品表面距离的变化(激光能量为26 mJ)

    Fig. 8.  Evolution of electron density with the distance between focusing lens and sample surface under different sample temperatures. Laser energy is 26 mJ.

    表 1  用于计算等离子体温度的光谱线参数表

    Table 1.  Spectral parameters of Cu (I) for calculating plasma temperature.

    波长/nmEk/eVgA/108 s–1
    510.553.81760.020(5)
    515.326.19120.60(15)
    521.826.19240.75(9)
    下载: 导出CSV
  • [1]

    Wang Z, Dong F, Zhou W 2015 Plasma Sci. Technol. 17 617Google Scholar

    [2]

    Wang Z, Ting B, Yuan, Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419Google Scholar

    [3]

    Wang Z Z, Deguchi Y, Zhang Z Z, Wang Z, Zeng X Y, Yan J J 2016 Front. Phys. 11 114213Google Scholar

    [4]

    朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫 2015 物理学报 64 024212Google Scholar

    Zhu G Z, Guo L B, Hao Z Q, Li C M, Shen M, Li K H, Li X Y, Liu J G, Zeng X Y, Lu Y F 2015 Acta Phys. Sin. 64 024212Google Scholar

    [5]

    Wang Q Q, Liu K, Zhao H, Ge C H, Huang Z W 2012 Front. Phys. 7 701Google Scholar

    [6]

    Hu L, Zhao N, Liu W, Meng D, Fang L, Wang Y, Yu Y, Ma M 2015 Plasma Sci. Technol. 17 699Google Scholar

    [7]

    Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y, Jin M 2016 J. Anal. Atom. Spectrom. 31 497Google Scholar

    [8]

    Li Y, Tian D, Ding Y, Yang G, Liu K, Wang C, Han X 2018 Appl. Spectrosc. Rev. 53 1Google Scholar

    [9]

    Li X, Wang Z, Fu Y, Li Z, Ni W 2015 Plasma Sci. Technol. 17 621Google Scholar

    [10]

    Wang X, Chen A, Sui L, Wang Y, Zhang D, Li S, Jiang Y, Jin M 2018 J. Anal. Atom. Spectrom. 33 168Google Scholar

    [11]

    吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 物理学报 66 054206Google Scholar

    Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206Google Scholar

    [12]

    Lu Y, Zhou Y S, Qiu W, Huang X, Liu L, Jiang L, Silvain J F, Lu Y F 2015 J. Anal. Atom. Spectrom. 30 2303Google Scholar

    [13]

    李百慧, 高勋, 宋超, 林景全 2016 物理学报 65 235201Google Scholar

    Li B H, Gao X, Song C, Lin J Q 2016 Acta Phys. Sin. 65 235201Google Scholar

    [14]

    Li C M, Guo L B, He X N, Hao Z Q, Li X Y, Shen M, Zeng X Y, Lu Y F 2014 J. Anal. Atom. Spectrom. 29 638Google Scholar

    [15]

    Wang Q, Chen A, Zhang D, Wang Y, Sui L, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 073301Google Scholar

    [16]

    Zhou W, Su X, Qian H, Li K, Li X, Yu Y, Ren Z 2013 J. Anal. Atom. Spectrom. 28 702Google Scholar

    [17]

    Liu L, Huang X, Li S, Lu Y, Chen K, Jiang L, Silvain J F, Lu Y F 2015 Opt. Express 23 15047Google Scholar

    [18]

    de Giacomo A, Gaudiuso R, Koral C, Dell'Aglio M, de Pascale O 2013 Anal. Chem. 85 10180Google Scholar

    [19]

    Li C, Hao Z, Zou Z, Zhou R, Li J, Guo L, Li X, Lu Y, Zeng X 2016 Opt. Express 24 7850Google Scholar

    [20]

    Tavassoli S H, Gragossian A 2009 Opt. Laser Technol. 41 481Google Scholar

    [21]

    Sanginés R, Sobral H, Alvarez-Zauco E 2012 Appl. Phys. B 108 867Google Scholar

    [22]

    Sanginés R, Sobral H, Alvarez-Zauco E 2012 Spectrochim. Acta B 68 40Google Scholar

    [23]

    Darbani S M R, Ghezelbash M, Majd A E, Soltanolkotabi M, Saghafifar H 2014 J. Eur. Opt. Soc.-Rapid 9 14058Google Scholar

    [24]

    Hanson C, Phongikaroon S, Scott J R 2014 Spectrochim. Acta B 97 79Google Scholar

    [25]

    Wang Y, Chen A, Jiang Y, Sui L, Wang X, Zhang D, Tian D, Li S, Jin M 2017 Phys. Plasmas 24 013301Google Scholar

    [26]

    Eschlböck-Fuchs S, Haslinger M J, Hinterreiter A, Kolmhofer P, Huber N, Rössler R, Heitz J, Pedarnig J D 2013 Spectrochim. Acta B 87 36Google Scholar

    [27]

    Liu Y, Tong Y, Li S, Wang Y, Chen A, Jin M 2016 Chin. Opt. Lett. 14 123001Google Scholar

    [28]

    Liu Y, Tong Y, Wang Y, Zhang D, Li S, Jiang Y, Chen A, Jin M 2017 Plasma Sci. Technol. 19 125501Google Scholar

    [29]

    Zhang D, Chen A, Wang Q, Wang Y, Qi H, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 083305Google Scholar

    [30]

    Multari R A, Foster L E, Cremers D A, Ferris M J 1996 Appl. Spectrosc. 50 1483Google Scholar

    [31]

    Aguilera J A, Aragón C 2008 Spectrochim. Acta B 63 793Google Scholar

    [32]

    Chen M, Liu Y H, Liu X D, Zhao M W 2012 Laser Phys. Lett. 9 730Google Scholar

    [33]

    Kasperczuk A, Pisarczyk T, Kalal M, Ullschmied J, Krousky E, Masek K, Pfeifer M, Rohlena K, Skala J, Pisarczyk P 2009 Appl. Phys. Lett. 94 081501Google Scholar

    [34]

    Guo J, Shao J, Wang T, Zheng C, Chen A, Jin M 2017 J. Anal. Atom. Spectrom. 32 367Google Scholar

    [35]

    Zhang D, Chen A, Wang X, Wang Y, Sui L, Ke D, Li S, Jiang Y, Jin M 2018 Spectrochim. Acta B 143 71Google Scholar

    [36]

    刘月华, 陈明, 刘向东, 崔清强, 赵明文 2013 物理学报 62 025203Google Scholar

    Liu Y H, Chen M, Liu X D, Cui Q Q, Zhao M W 2013 Acta Phys. Sin. 62 025203Google Scholar

    [37]

    Li X, Wei W, Wu J, Jia S, Qiu A 2013 J. Appl. Phys. 113 243304Google Scholar

    [38]

    Amin S, Bashir S, Anjum S, Akram M, Hayat A, Waheed S, Iftikhar H, Dawood A, Mahmood K 2017 Phys. Plasmas 24 083112Google Scholar

    [39]

    Wang Y, Chen A, Wang Q, Sui L, Ke D, Cao S, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 033302Google Scholar

    [40]

    Tian Y, Xue B, Song J, Lu Y, Li Y, Zheng R 2017 Appl. Phys. Express 10 072401Google Scholar

    [41]

    Wang Y, Chen A, Li S, Ke D, Wang X, Zhang D, Jiang Y, Jin M 2017 AIP Adv. 7 095204Google Scholar

    [42]

    Haq S U, Ahmat L, Mumtaz M, Shakeel H, Mahmood S, Nadeem A 2015 Phys. Plasmas 22 083504Google Scholar

    [43]

    Guo J, Wang T, Shao J, Chen A, Jin M 2018 J. Anal. Atom. Spectrom. 33 2116Google Scholar

    [44]

    Thorstensen J, Foss S E 2012 J. Appl. Phys. 112 103514Google Scholar

    [45]

    赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 物理学报 67 165201Google Scholar

    Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201Google Scholar

    [46]

    杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星 2017 物理学报 66 115201Google Scholar

    Yang D P, Li S Y, Jiang Y F, Chen A M, Jin M X 2017 Acta Phys. Sin. 66 115201Google Scholar

    [47]

    Wang Q, Chen A, Wang Y, Sui L, Li S, Jin M 2018 J. Anal. Atom. Spectrom. 33 1154Google Scholar

    [48]

    Chen A, Jiang Y, Wang T, Shao J, Jin M 2015 Phys. Plasmas 22 033301Google Scholar

    [49]

    NIST Atomic Spectra Database http://physics.nist.gov/PhysRefData/ASD/lines_form.html

    [50]

    Wang J, Fu H, Ni Z, Chen X, He W, Dong F 2015 Plasma Sci. Technol. 17 649Google Scholar

    [51]

    Konjević N, Wiese W 1990 J. Phys. Chem. Ref. Data 19 1307Google Scholar

  • [1] 侯佳佳, 张大成, 冯中琦, 朱江峰. 基于温度迭代校正自吸收效应的激光诱导击穿光谱定量分析方法. 物理学报, 2024, 73(5): 054205. doi: 10.7498/aps.73.20231541
    [2] 戴宇佳, 李明亮, 宋超, 高勋, 郝作强, 林景全. 空间约束结合梯度下降法提高铝合金中Fe成分激光诱导击穿光谱技术检测精度. 物理学报, 2021, 70(20): 205204. doi: 10.7498/aps.70.20210792
    [3] 董鹏凯, 赵上勇, 郑柯鑫, 王蓟, 高勋, 郝作强, 林景全. 激光诱导击穿光谱技术结合神经网络和支持向量机算法的人参产地快速识别研究. 物理学报, 2021, 70(4): 040201. doi: 10.7498/aps.70.20201520
    [4] 刘立拓, 王春龙, 余晓娅, 石俊凯, 黎尧, 陈晓梅, 周维虎. 硅片表面纳米颗粒剥离及其成分检测方法研究. 物理学报, 2020, 69(16): 165201. doi: 10.7498/aps.69.20200517
    [5] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂. 基于自吸收量化的激光诱导等离子体表征方法. 物理学报, 2018, 67(16): 165201. doi: 10.7498/aps.67.20180374
    [6] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [7] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量. 物理学报, 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [8] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究. 物理学报, 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [9] 张颖, 张大成, 马新文, 潘冬, 赵冬梅. 基于激光诱导击穿光谱技术定量分析食用明胶中的铬元素. 物理学报, 2014, 63(14): 145202. doi: 10.7498/aps.63.145202
    [10] 陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂. 基于多元定标法的脐橙Pb元素激光诱导击穿光谱定量分析. 物理学报, 2014, 63(10): 104213. doi: 10.7498/aps.63.104213
    [11] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [12] 郭连波, 郝荣飞, 郝中骐, 李阔湖, 沈萌, 任昭, 李祥友, 曾晓雁. 激光诱导AlO自由基B2+X2+跃迁光谱研究. 物理学报, 2013, 62(22): 224211. doi: 10.7498/aps.62.224211
    [13] 于洋, 郝中骐, 李常茂, 郭连波, 李阔湖, 曾庆栋, 李祥友, 任昭, 曾晓雁. 支持向量机算法在激光诱导击穿光谱技术塑料识别中的应用研究. 物理学报, 2013, 62(21): 215201. doi: 10.7498/aps.62.215201
    [14] 张旭, 姚明印, 刘木华. 激光诱导击穿光谱结合偏最小二乘法定量分析脐橙中Cd含量. 物理学报, 2013, 62(4): 044211. doi: 10.7498/aps.62.044211
    [15] 王春龙, 刘建国, 赵南京, 马明俊, 王寅, 胡丽, 张大海, 余洋, 孟德硕, 章炜, 刘晶, 张玉钧, 刘文清. 水体重金属激光诱导击穿光谱定量分析方法对比研究. 物理学报, 2013, 62(12): 125201. doi: 10.7498/aps.62.125201
    [16] 鲁翠萍, 刘文清, 赵南京, 刘立拓, 陈东, 张玉钧, 刘建国. 土壤重金属铬元素的激光诱导击穿光谱定量分析研究. 物理学报, 2011, 60(4): 045206. doi: 10.7498/aps.60.045206
    [17] 孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文. 基于激光诱导击穿光谱技术的铝合金成分定量分析. 物理学报, 2010, 59(7): 4571-4576. doi: 10.7498/aps.59.4571
    [18] 宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A., 苟富君. 样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟. 物理学报, 2010, 59(10): 7225-7231. doi: 10.7498/aps.59.7225
    [19] 张大成, 马新文, 朱小龙, 李 斌, 祖凯玲. 激光诱导击穿光谱应用于三种水果样品微量元素的分析. 物理学报, 2008, 57(10): 6348-6353. doi: 10.7498/aps.57.6348
    [20] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
计量
  • 文章访问数:  6180
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-14
  • 修回日期:  2019-01-06
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回