搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子动力学模拟压水反应堆中联氨对水的影响

范永胜 陈旭 周维 史顺平 李勇

引用本文:
Citation:

分子动力学模拟压水反应堆中联氨对水的影响

范永胜, 陈旭, 周维, 史顺平, 李勇

Molecular dynamics simulation for the impact of hydrazineon the water of pressurized water reactors

Shi Shun-Ping, Li Yong, Fan Yong-Sheng, Chen Xu, Zhou Wei
PDF
导出引用
  • 本文采用分子动力学方法模拟在常温常压下(1 atm,298 K)和在压水堆环境下(155 atm,626 K),水分子数为256,联氨(N2H4)分子数为0,25,50,75等不同数目时,水和联氨粒子系统的动力性质和微观结构.同时探讨了联氨分子的引入对水中溶解氧的影响.从模拟结果可知,在常温常压下,当联氨的分子数为0,25,50,75时,粒子系统的均方位移会随联氨分子数的增加而增加;联氨分子数为0与为25,50,75比较时会少一个数量级;压水堆环境下,联氨分子数
    In this paper, we used molecular dynamics to simulate dynamic properties and micro-structure of the water-hydrazine particle system under various conditions:chamber condition of 1 atm, 298 K; pressurized water reactor (PWR) environment of 155 atm, 626 K; with number of water molecules of 256, numbers of hydrazine (N2H4) molecules of 0, 25, 50 and 75. And we have also explored the impact on the dissolved oxygen in water when hydrazine molecule is added to the system. The simulation results show that in the chamber ambient, when the number of molecules of hydrazine varies from 0 to 25, 50 and 75, the mean square displacement (MSD) in the particle system will increase with the number of particles of the hydrazine. The MSD for hydrazine molecule of number 0 will be ten less than that of 25, 50 and 75. Under the PWR environment, with hydrazine molecule number of 50, the MSD is about 4 times higher than that in chamber ambient. At the same time, under such condition, the MSD of particle system does not increase with the number of hydrazine molecules. The MSD with hydrazine molecule of 50 is higher than its counterpart with the number of molecules of 25 or 75. In addition, the micro-structure of particle systems, from the perspective of the radial distribution functions (RDF), will increase with the increase of concentration of hydrazine in chamber ambient. This conclusion goes along with the fact that hydrazine is easy to react with water to generate hydrazine hydrate. While in the pressurized water reactor environment, the radial distributions of the water with the number of hydrazine molecules of 25, 50 and 0 will have no big change. But the radial distributions with the number of hydrazine molecules of 75 increase significantly. It can be seen from simulation data that hydrazine added to PWR significantly inhibits the dissolved oxygen in water, but the inhibition does not increase in proportion to the increase of the concentration of hydrazine. This phenomenon and its causes are revealed comprehensively in this paper.
    • 基金项目: 国家自然科学基金(批准号:10676022),四川省科技支撑计划基金(批准号:2009GZ0232)资助的课题.
    [1]

    Sennour M, Laghoutaris P, Guerre C 2009 Journal of Nuclear Materials 393 254

    [2]

    Liu Y Z 2007 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China)(in Chinese)[刘彦章 2007 博士学位论文(成都:电子科技大学)]

    [3]

    Tong L S 1983 Pressurized Water Reactor Manual Analysis (Beijing:Atomic Energy Press) p7—8

    [4]

    Zhang Q X 1984 Pressurized water reactor issue of Chemistry and Chemical Engineering (Beijing:Atomic Energy Press) p179

    [5]

    Yang Z F, Mi P Q, Zhu B Z 1988 Atom Energy Science and Technology 22 463

    [6]

    Yu D Q, Chen M 2006 Acta Phys. Sin 55 1628 (in Chinese) [余大启、陈 民 2006 物理学报 55 1628]

    [7]

    Zhang R, He J, Peng Z H, Xuan L 2009 Acta Phys. Sin. 58 5560 (in Chinese) [张 然、何 军、彭增辉、宣 丽 2009 物理学报 58 5560]

    [8]

    Chen M, Hou Q 2010 Acta Phys. Sin. 59 1185 (in Chinese) [陈 敏、侯 氢 2010 物理学报 59 1185]

    [9]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford:Clarendon Press)

    [10]

    Jorgensen W L, Chandrasekhar J, Madura J D 1983 J. Chem. Phys. 79 926

    [11]

    Kunlo Kohata, Tsutomu Fukuyama, Koro Kuchltsu 1982 J. Phys. Chem. 86 602

    [12]

    Wilhelm E, Battino R 1971 J. Chem. Phys. 55 4012

    [13]

    Nose S 1984 Phys. 52 255

    [14]

    Nose S 1991 Theor. Phys. Suppl. 1

    [15]

    Hernadez E 2001 J. Chem. Phys. 115 10282

    [16]

    Anderson H C 1980 J. Chem. Phys. 72 2384

    [17]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [18]

    Ray J R, Rahman A 1984 J. Chem. Phys. 80 4423

    [19]

    Allen M P 1987 Introduction to Molecular Dynamics Simulation (Oxford:Clarendon press)

    [20]

    Gear C W 1971 Numerical Integration of Ordinary Differential Equations (New Jersey:Prent ice-Hall, Englewood Cliffs)

    [21]

    Verlet L 1967 Phys. Rev. 159 98

    [22]

    Swope W C, Anderson H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [23]

    Honeycutt R W 1970 Methods in computational Physics 9 136

    [24]

    Beeman D 1976 Journal of Computational Physics 20 130

    [25]

    Wan L H, Yan K F, Li X S, Huang N S, Tang L G 2009 Acta Chem. Sin. 67 2149

    [26]

    Li M L, Zhang D, Sun H N 2008 Acta Phys. Sin. 57 7157 (in Chinese) [李美丽、张 迪、孙宏宁 2008 物理学报 57 7157]

    [27]

    Tian X F, Long C S, Zhu Z H, Gao T 2010 Chin. Phys. B 19 057102

    [28]

    Lu Z L, Zou W Q, Xu M X, Zhang F M 2010 Chin. Phys. B 19 065101

    [29]

    Wen Y h, Zhu R Z, Zhou F X, Wang C Y 2003 Advances in Mechanics 33 65

    [30]

    Garnsey R 1978 Proc. Ref. 23 1

  • [1]

    Sennour M, Laghoutaris P, Guerre C 2009 Journal of Nuclear Materials 393 254

    [2]

    Liu Y Z 2007 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China)(in Chinese)[刘彦章 2007 博士学位论文(成都:电子科技大学)]

    [3]

    Tong L S 1983 Pressurized Water Reactor Manual Analysis (Beijing:Atomic Energy Press) p7—8

    [4]

    Zhang Q X 1984 Pressurized water reactor issue of Chemistry and Chemical Engineering (Beijing:Atomic Energy Press) p179

    [5]

    Yang Z F, Mi P Q, Zhu B Z 1988 Atom Energy Science and Technology 22 463

    [6]

    Yu D Q, Chen M 2006 Acta Phys. Sin 55 1628 (in Chinese) [余大启、陈 民 2006 物理学报 55 1628]

    [7]

    Zhang R, He J, Peng Z H, Xuan L 2009 Acta Phys. Sin. 58 5560 (in Chinese) [张 然、何 军、彭增辉、宣 丽 2009 物理学报 58 5560]

    [8]

    Chen M, Hou Q 2010 Acta Phys. Sin. 59 1185 (in Chinese) [陈 敏、侯 氢 2010 物理学报 59 1185]

    [9]

    Allen M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford:Clarendon Press)

    [10]

    Jorgensen W L, Chandrasekhar J, Madura J D 1983 J. Chem. Phys. 79 926

    [11]

    Kunlo Kohata, Tsutomu Fukuyama, Koro Kuchltsu 1982 J. Phys. Chem. 86 602

    [12]

    Wilhelm E, Battino R 1971 J. Chem. Phys. 55 4012

    [13]

    Nose S 1984 Phys. 52 255

    [14]

    Nose S 1991 Theor. Phys. Suppl. 1

    [15]

    Hernadez E 2001 J. Chem. Phys. 115 10282

    [16]

    Anderson H C 1980 J. Chem. Phys. 72 2384

    [17]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [18]

    Ray J R, Rahman A 1984 J. Chem. Phys. 80 4423

    [19]

    Allen M P 1987 Introduction to Molecular Dynamics Simulation (Oxford:Clarendon press)

    [20]

    Gear C W 1971 Numerical Integration of Ordinary Differential Equations (New Jersey:Prent ice-Hall, Englewood Cliffs)

    [21]

    Verlet L 1967 Phys. Rev. 159 98

    [22]

    Swope W C, Anderson H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [23]

    Honeycutt R W 1970 Methods in computational Physics 9 136

    [24]

    Beeman D 1976 Journal of Computational Physics 20 130

    [25]

    Wan L H, Yan K F, Li X S, Huang N S, Tang L G 2009 Acta Chem. Sin. 67 2149

    [26]

    Li M L, Zhang D, Sun H N 2008 Acta Phys. Sin. 57 7157 (in Chinese) [李美丽、张 迪、孙宏宁 2008 物理学报 57 7157]

    [27]

    Tian X F, Long C S, Zhu Z H, Gao T 2010 Chin. Phys. B 19 057102

    [28]

    Lu Z L, Zou W Q, Xu M X, Zhang F M 2010 Chin. Phys. B 19 065101

    [29]

    Wen Y h, Zhu R Z, Zhou F X, Wang C Y 2003 Advances in Mechanics 33 65

    [30]

    Garnsey R 1978 Proc. Ref. 23 1

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [3] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [4] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [5] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [6] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [7] 尹灵康, 徐顺, Seongmin Jeong, Yongseok Jho, 王健君, 周昕. 广义等温等压系综-分子动力学模拟全原子水的气液共存形貌. 物理学报, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [8] 徐雪峰, 付元光, 朱剑钰, 李瑞, 田东风, 伍钧, 李凯波. 关于压水堆产武器级钚的模拟计算. 物理学报, 2017, 66(8): 082801. doi: 10.7498/aps.66.082801
    [9] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [10] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究. 物理学报, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [11] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [12] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [13] 刘华敏, 范永胜, 田时海, 周维, 陈旭. 分子动力学模拟压水反应堆中氢气对水的影响. 物理学报, 2012, 61(6): 062801. doi: 10.7498/aps.61.062801
    [14] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [15] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [16] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [17] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  8297
  • PDF下载量:  668
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-18
  • 修回日期:  2010-06-21
  • 刊出日期:  2011-03-15

/

返回文章
返回