搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaN HEMT栅边缘电容用于缺陷的研究

王鑫华 庞磊 陈晓娟 袁婷婷 罗卫军 郑英奎 魏珂 刘新宇

引用本文:
Citation:

GaN HEMT栅边缘电容用于缺陷的研究

王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇

Investigation on trap by the gate fringecapacitance in GaN HEMT

Wang Xin-Hua, Pang Lei, Chen Xiao-Juan, Yuan Ting-Ting, Luo Wei-Jun, Zheng Ying-Kui, Wei Ke, Liu Xin-Yu
PDF
导出引用
  • 本文对GaN HEMT栅漏电容的频率色散特性进行分析,认为栅边缘电容的色散是导致栅漏电容频率色散特性不同于圆肖特基二极管电容的主要原因. 通过对不同栅偏置条件下缺陷附加电容与频率关系的拟合,发现小栅压下的缺陷附加电容仅满足单能级缺陷模型,而强反向栅压下的缺陷附加电容同时满足单能级和连续能级缺陷模型. 实验中栅边缘电容的频率色散现象在钝化工艺后出现,其反映的缺陷很可能是钝化工艺引入,且位于源漏间栅金属未覆盖区域的表面. 最后通过低频噪声技术进一步验证栅边缘电容提取缺陷参数的可行性. 低频噪声技术获得的单能级
    The analysis of the frequency dispersion characteristics of the gate-drain capacitance of GaN HEMT indicates that the gate fringe capacitance is responsible for the dispersion difference between the gate-drain capacitance and circle Schottky diode. By fitting the relationship between the additional capacitance of trap and frequency, we discover that the additional capacitance of trap can meet single energy level model only under small gate bias, and meet both single and consecutive energy level model under strong reverse gate bias. The gate fringe capacitance dispersion appears after SiN passivation. It suggests that the trap observed by fringe capacitance is introduced by passivation, which lies in the surface of the ungated region between source and drain. Finally, the low frequency noise technology is used to validate the feasibility of abstracting trap parameter by the gate fringe capacitance. The time constant of single energy level trap obtained by low frequency noise technology is consistent with the result obtained by the gate fringe capacitance under strong reverse gate bias.
    • 基金项目: 国家重点基础研究发展计划(973)项目(批准号:2010CB327500)资助的课题.
    [1]

    Waltereit P, Bronner W, Kiefer R, Quay R, Kühn J, Van Raay F, Dammann M, Müller S, Libal C, Meier T, Mikulla M,Ambacher O 2010 CS MANTECH Conference Oregon Portland, USA, May 17th—20th, 2010 p137

    [2]

    Del Alamo J A,Joh J 2009 Microelectron. Reliab. 49 1200

    [3]

    Wang R X, Xu S J, Shi S L, Beling C D, Fung S, Zhao D G, Yang H,Tao X M 2006 Appl. Phys. Lett. 89 3

    [4]

    Burgaud P, Constancias L, Martel G, Savina C,Mesnager D 2007 Microelectron. Reliab. 47 1653

    [5]

    Chou Y C, Leung D, Smorchkova I, Wojtowicz M, Grundbacher R, Callejo L, Kan Q, Lai R, Liu P H, Eng D,Oki A 2004 Microelectron. Reliab. 44 1033

    [6]

    Park S Y, Floresca C, Chowdhury U, Jimenez J L, Lee C, Beam E, Saunier P, Balistreri T,Kim M J 2009 Microelectron. Reliab. 49 478

    [7]

    Dammann M, Pletschen W, Waltereit P, Bronner W, Quay R, Müller S, Mikulla M, Ambacher O, van der Wel P J, Murad S, Rödle T, Behtash R, Bourgeois F, Riepe K, Fagerlind M,Sveinbjörnsson E  2009 Microelectron. Reliab. 49 474

    [8]

    Vetury R, Zhang N Q Q, Keller S,Mishra U K 2001 IEEE Trans. Electron Devices 48 560

    [9]

    Conway A M, Chen M, Hashimoto P, Willadsen P J,Micovic M CS MANTECH Conference, Texas Austin, USA, May 14—17 p99

    [10]

    Liu W L, Chen Y L, Balandin A A,Wang K L 2006 J.Nanoelectron.Optoelectron. 1 258

    [11]

    Shealy J R,Brown R J 2008 Appl. Phys. Lett. 92 032101

    [12]

    Wang X H, Zhao M, Liu X Y, Pu Y, Zheng Y K,Wei K 2010 Chin. Phys. B 19 097302

    [13]

    Zhang J F, Wang C, Zhang J C,Hao Y 2006 Chin. Phys. 15 1060

    [14]

    Qian L, Jiangfeng D, Mohua Y, Shenghui L, Wei Z, Jianxin X,Qi Y 2000 the 8th International Conference on Solid-State and Integrated Circuit Technology Shanghai, China, Oct 23—26 p923

    [15]

    Balandin A, Morozov S V, Cai S, Li R, Wang K L, Wijeratne G,Viswanathan C R 1999 IEEE Trans. Microw. Theory Tech. 47 1413

    [16]

    Rice A K,Malloy K J 2000 J. Appl. Phys. 87 7892

    [17]

    Bouya M, Malbert N, Labat N, Carisetti D, Perdu P, Clément J C, Lambert B,Bonnet M 2008 Microelectron. Reliab. 48 1366

    [18]

    Miller E J, Dang X Z, Wieder H H, Asbeck P M, Yu E T, Sullivan G J,Redwing J M 2000 J. Appl. Phys. 87 8070

    [19]

    Kokorev M F,Maleev N A 1996 Solid State Electron. 39 297

    [20]

    Parvesh G, Sujata P, Subhasis H, Mridula G,Gupta R S 2007 Microelectron. J. 38 848

    [21]

    Gangwani P, Gupta M, Kaur R, Pandey S, Haldar S,Gupta R S Asia-Pacific Microwave Conference, Hong Kong, China, Dec 16—20 p1

    [22]

    Nicollian E H,Brews J R 1982 MOS (Metal Oxide Semiconductor) Physics and Technology (1st ed) (New York: Wiley Interscience) p928

    [23]

    Goetzberger E H N a A 1968 Microelectron. Reliab. 7

    [24]

    Hashizume T, Alekseev E, Pavlidis D, Boutros K S,Redwing J 2000 J. Appl. Phys. 88 1983

    [25]

    Balandin A, Morozov S, Wijeratne G, Cai S J, Li R, Li J, Wang K L, Viswanathan C R,Dubrovskii Y 1999 Appl. Phys. Lett. 75 2064

    [26]

    Rumyantsev S L, Pala N, Shur M S, Borovitskaya E, Dmitriev A P, Levinshtein M E, Gaska R, Khan M A, Jinwei Y, Xuhong H,Simin G 2001 IEEE Trans. Electron Devices 48 530

    [27]

    Levinshtein M E 15th International Conference on Noise in Physical Systems and 1/f Fluctuations Hong Kong,China, August 23—26 p213

    [28]

    Jones B K 1994 IEEE Trans. Electron Devices 41 2188

    [29]

    Vandamme L K J 1994 IEEE Trans. Electron Devices 41 2176

  • [1]

    Waltereit P, Bronner W, Kiefer R, Quay R, Kühn J, Van Raay F, Dammann M, Müller S, Libal C, Meier T, Mikulla M,Ambacher O 2010 CS MANTECH Conference Oregon Portland, USA, May 17th—20th, 2010 p137

    [2]

    Del Alamo J A,Joh J 2009 Microelectron. Reliab. 49 1200

    [3]

    Wang R X, Xu S J, Shi S L, Beling C D, Fung S, Zhao D G, Yang H,Tao X M 2006 Appl. Phys. Lett. 89 3

    [4]

    Burgaud P, Constancias L, Martel G, Savina C,Mesnager D 2007 Microelectron. Reliab. 47 1653

    [5]

    Chou Y C, Leung D, Smorchkova I, Wojtowicz M, Grundbacher R, Callejo L, Kan Q, Lai R, Liu P H, Eng D,Oki A 2004 Microelectron. Reliab. 44 1033

    [6]

    Park S Y, Floresca C, Chowdhury U, Jimenez J L, Lee C, Beam E, Saunier P, Balistreri T,Kim M J 2009 Microelectron. Reliab. 49 478

    [7]

    Dammann M, Pletschen W, Waltereit P, Bronner W, Quay R, Müller S, Mikulla M, Ambacher O, van der Wel P J, Murad S, Rödle T, Behtash R, Bourgeois F, Riepe K, Fagerlind M,Sveinbjörnsson E  2009 Microelectron. Reliab. 49 474

    [8]

    Vetury R, Zhang N Q Q, Keller S,Mishra U K 2001 IEEE Trans. Electron Devices 48 560

    [9]

    Conway A M, Chen M, Hashimoto P, Willadsen P J,Micovic M CS MANTECH Conference, Texas Austin, USA, May 14—17 p99

    [10]

    Liu W L, Chen Y L, Balandin A A,Wang K L 2006 J.Nanoelectron.Optoelectron. 1 258

    [11]

    Shealy J R,Brown R J 2008 Appl. Phys. Lett. 92 032101

    [12]

    Wang X H, Zhao M, Liu X Y, Pu Y, Zheng Y K,Wei K 2010 Chin. Phys. B 19 097302

    [13]

    Zhang J F, Wang C, Zhang J C,Hao Y 2006 Chin. Phys. 15 1060

    [14]

    Qian L, Jiangfeng D, Mohua Y, Shenghui L, Wei Z, Jianxin X,Qi Y 2000 the 8th International Conference on Solid-State and Integrated Circuit Technology Shanghai, China, Oct 23—26 p923

    [15]

    Balandin A, Morozov S V, Cai S, Li R, Wang K L, Wijeratne G,Viswanathan C R 1999 IEEE Trans. Microw. Theory Tech. 47 1413

    [16]

    Rice A K,Malloy K J 2000 J. Appl. Phys. 87 7892

    [17]

    Bouya M, Malbert N, Labat N, Carisetti D, Perdu P, Clément J C, Lambert B,Bonnet M 2008 Microelectron. Reliab. 48 1366

    [18]

    Miller E J, Dang X Z, Wieder H H, Asbeck P M, Yu E T, Sullivan G J,Redwing J M 2000 J. Appl. Phys. 87 8070

    [19]

    Kokorev M F,Maleev N A 1996 Solid State Electron. 39 297

    [20]

    Parvesh G, Sujata P, Subhasis H, Mridula G,Gupta R S 2007 Microelectron. J. 38 848

    [21]

    Gangwani P, Gupta M, Kaur R, Pandey S, Haldar S,Gupta R S Asia-Pacific Microwave Conference, Hong Kong, China, Dec 16—20 p1

    [22]

    Nicollian E H,Brews J R 1982 MOS (Metal Oxide Semiconductor) Physics and Technology (1st ed) (New York: Wiley Interscience) p928

    [23]

    Goetzberger E H N a A 1968 Microelectron. Reliab. 7

    [24]

    Hashizume T, Alekseev E, Pavlidis D, Boutros K S,Redwing J 2000 J. Appl. Phys. 88 1983

    [25]

    Balandin A, Morozov S, Wijeratne G, Cai S J, Li R, Li J, Wang K L, Viswanathan C R,Dubrovskii Y 1999 Appl. Phys. Lett. 75 2064

    [26]

    Rumyantsev S L, Pala N, Shur M S, Borovitskaya E, Dmitriev A P, Levinshtein M E, Gaska R, Khan M A, Jinwei Y, Xuhong H,Simin G 2001 IEEE Trans. Electron Devices 48 530

    [27]

    Levinshtein M E 15th International Conference on Noise in Physical Systems and 1/f Fluctuations Hong Kong,China, August 23—26 p213

    [28]

    Jones B K 1994 IEEE Trans. Electron Devices 41 2188

    [29]

    Vandamme L K J 1994 IEEE Trans. Electron Devices 41 2176

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [3] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为. 物理学报, 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [4] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, 69(7): 077302. doi: 10.7498/aps.69.20191931
    [5] 王党会, 许天旱. 蓝紫光发光二极管中的低频产生-复合噪声行为研究. 物理学报, 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [6] 刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强. 氢化非晶硅薄膜晶体管的低频噪声特性. 物理学报, 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [7] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究. 物理学报, 2016, 65(5): 057501. doi: 10.7498/aps.65.057501
    [8] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [9] 王凯, 刘远, 陈海波, 邓婉玲, 恩云飞, 张平. 部分耗尽结构绝缘体上硅器件的低频噪声特性. 物理学报, 2015, 64(10): 108501. doi: 10.7498/aps.64.108501
    [10] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [11] 王爱迪, 刘紫玉, 张培健, 孟洋, 李栋, 赵宏武. Au/SrTiO3/Au界面电阻翻转效应的低频噪声分析. 物理学报, 2013, 62(19): 197201. doi: 10.7498/aps.62.197201
    [12] 刘玉栋, 杜磊, 孙鹏, 陈文豪. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响. 物理学报, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [13] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析. 物理学报, 2012, 61(22): 227302. doi: 10.7498/aps.61.227302
    [14] 陈文豪, 杜磊, 殷雪松, 康莉, 王芳, 陈松. PbS红外探测器低频噪声物理模型及缺陷表征研究. 物理学报, 2011, 60(10): 107202. doi: 10.7498/aps.60.107202
    [15] 王鑫华, 赵妙, 刘新宇, 蒲颜, 郑英奎, 魏珂. AlGaN/AlN/GaN高电子迁移率器件的电容电压特性的经验拟合. 物理学报, 2011, 60(4): 047101. doi: 10.7498/aps.60.047101
    [16] 于思瑶, 郭树旭, 郜峰利. 半导体激光器低频噪声的Lyapunov指数计算和混沌状态判定. 物理学报, 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [17] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, 2007, 56(5): 2895-2899. doi: 10.7498/aps.56.2895
    [18] 范 隆, 郝 跃. 辐射感生应力弛豫对AlmGa1-mN/GaN HEMT电学特性的影响. 物理学报, 2007, 56(6): 3393-3399. doi: 10.7498/aps.56.3393
    [19] 李东临, 曾一平. InP基HEMT器件中二维电子气浓度及分布与沟道层厚度关系的理论分析. 物理学报, 2006, 55(7): 3677-3682. doi: 10.7498/aps.55.3677
    [20] 黄杨程, 刘大福, 梁晋穗, 龚海梅. 短波碲镉汞光伏器件的低频噪声研究. 物理学报, 2005, 54(5): 2261-2266. doi: 10.7498/aps.54.2261
计量
  • 文章访问数:  9539
  • PDF下载量:  763
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-18
  • 修回日期:  2010-12-27
  • 刊出日期:  2011-09-15

/

返回文章
返回