搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度梯度对晶粒生长行为影响的相场模拟

魏承炀 李赛毅

引用本文:
Citation:

温度梯度对晶粒生长行为影响的相场模拟

魏承炀, 李赛毅

Effect of temperature gradient on grain growth behavior from phase field simulations

Wei Cheng-Yang, Li Sai-Yi
PDF
导出引用
  • 利用相场法建立了一个可应用于研究温度梯度影响下的晶粒生长行为的二维模型,模拟了多晶材料退火过程中由温度梯度引起的非均匀晶粒生长和定向晶粒生长行为.结果表明:退火过程中,在静态温度梯度的影响下,体系的晶粒呈现不均匀生长,且从晶粒生长指数来看,不同程度地偏离了正常晶粒生长;在动态温度梯度的影响下,体系内部常出现柱状晶粒生长,柱状晶粒前端持续生长至温度最高位置;柱状晶粒生长与动态热源的移动速率密切相关,只有当动态热源的移动速率处于最小和最大晶粒生长速率之间时,柱状晶粒才会出现.
    A 2D model is developed to investigate the grain growth behavior under the influence of temperature gradient using the phase field method. The model is used to simulate the effect of temperature gradient on the nonuniform and directional grain growth behavior during annealing of polycrystalline materials. The results show that the static temperature gradient leads to the nonumiform grain growth, and that the grain growth exponent deviates from that of normal grain growth. In the case of annealing with a moving temperature gradient, the columnar grains may develop towards the locations with the highest temperature in the heated zone. Moreover, the grain growth behavior is closely related to the moving speed of the moving heated zone. Columnar grains occur only when the moving speed of the heated zone is higher than the minimum grain growth rate but lower than the maximum grain growth rate.
    • 基金项目: 教育部新世纪优秀人才支持计划(批准号:NCET-06-0741)资助的课题.
    [1]

    Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Juul Jensen D, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D 1997 Mater. Sci. Eng. A 238 219

    [2]

    Humphreys F J, Hatherly M 2004 Recrystallization and related annealing phenomena (second edition) (Oxford: Elsevier) pp121-167

    [3]
    [4]
    [5]

    Li J, Johns S L, Iliescu B M, Frost H J, Baker I 2002 Acta Mater. 50 4491

    [6]

    Baker I, Li J 2002 Acta Mater. 50 805

    [7]
    [8]

    Rollett A D, Srolovitz D J, Anderson M P 1989 Acta Mater. 37 1227

    [9]
    [10]
    [11]

    Holm E A, Zacharopoulos N, Srolovitz D J 1998 Acta Mater. 46 953

    [12]
    [13]

    Simmons J P, Wen Y H, Shen C, Wang Y Z 2003 Mater. Sci. Eng. A 365 136

    [14]

    Chen L Q 1995 Scripta Metall. Mater. 32 115

    [15]
    [16]

    Li J J, Wang J C, Yang G C 2008 Chin. Phys. B 17 3516

    [17]
    [18]
    [19]

    Gao Y J, Zhang H L, Jin X, Huang C G, Luo Z R 2009 Acta Metall. Sin. 45 1190 (in Chinese) [高英俊、张海林、金星 、黄创高、罗志荣 2009 金属学报 45 1190]

    [20]
    [21]

    Lu Y, Beckermanm C, Ramirez J C 2005 J. Crys. Grow. 280 320

    [22]
    [23]

    Moelans N 2006 Ph. D. Dissertation (Leuven: Katholieke Universiteit Leuven)

    [24]

    Yang H, Zhang Q G, Chen M 2005 Acta Phys. Sin. 54 3740 (in Chinese) [杨 弘、张清光、陈 民 2005 物理学报 54 3740]

    [25]
    [26]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. Let. 101 025502

    [27]
    [28]

    Kazaryan A, Wang Y, Dregia S A, Patton B R 2002 Acta Mater. 50 2491

    [29]
    [30]

    Chan J W, Hilliard J E 1958 J. Chem. Phy. 28 258

    [31]
    [32]
    [33]

    Encyclopedia Britannica (Encyclopedia Britannica, Inc., Chicago, IL)

    [34]

    Zong Y P, Wang M T, Guo W 2009 Acta Phys. Sin. 58 S161 (in Chinese) [宗亚平、王明涛、郭 巍 2009 物理学报 58 S161]

    [35]
    [36]
    [37]

    Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147

    [38]

    Fan D, Chen L Q, Chen S P 1997 Mater. Sci. Eng. A 238 78

    [39]
    [40]
    [41]

    Chen Q, Ma N, Wu K S, Wang Y Z 2004 Scripta Mater. 50 471

    [42]

    Wei C Y, Gao Y J, Zhang L N 2008 Chin. J. Nonfer. Metal. 18 132 (in Chinese) [魏承炀、高英俊、张丽娜 2008 中国有色金属学报 18 132]

    [43]
    [44]
    [45]

    Grest G S, Anderson M P 1988 Phys. Rev. B 38 4752

    [46]
    [47]

    Anderson M P, Srolovitz D J, Grest G S, Sahni P S 1984 Acta Metal. 32 783

    [48]

    Song X Y, Liu G Q, He Y Z 1998 Prog. Natur. Sci. 8 337 (in Chinese) [宋晓艳、刘国权、何宜柱 1998 自然科学进展 8 337]

    [49]
    [50]

    Chen D Q, Zheng Z Q, Liu Z Y, Li S C 2003 Acta Metall. Sin. 39 1238 (in Chinese) [陈大钦、郑子樵、刘祖耀、李世晨 2003 金属学报 39 1238]

    [51]
  • [1]

    Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Juul Jensen D, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D 1997 Mater. Sci. Eng. A 238 219

    [2]

    Humphreys F J, Hatherly M 2004 Recrystallization and related annealing phenomena (second edition) (Oxford: Elsevier) pp121-167

    [3]
    [4]
    [5]

    Li J, Johns S L, Iliescu B M, Frost H J, Baker I 2002 Acta Mater. 50 4491

    [6]

    Baker I, Li J 2002 Acta Mater. 50 805

    [7]
    [8]

    Rollett A D, Srolovitz D J, Anderson M P 1989 Acta Mater. 37 1227

    [9]
    [10]
    [11]

    Holm E A, Zacharopoulos N, Srolovitz D J 1998 Acta Mater. 46 953

    [12]
    [13]

    Simmons J P, Wen Y H, Shen C, Wang Y Z 2003 Mater. Sci. Eng. A 365 136

    [14]

    Chen L Q 1995 Scripta Metall. Mater. 32 115

    [15]
    [16]

    Li J J, Wang J C, Yang G C 2008 Chin. Phys. B 17 3516

    [17]
    [18]
    [19]

    Gao Y J, Zhang H L, Jin X, Huang C G, Luo Z R 2009 Acta Metall. Sin. 45 1190 (in Chinese) [高英俊、张海林、金星 、黄创高、罗志荣 2009 金属学报 45 1190]

    [20]
    [21]

    Lu Y, Beckermanm C, Ramirez J C 2005 J. Crys. Grow. 280 320

    [22]
    [23]

    Moelans N 2006 Ph. D. Dissertation (Leuven: Katholieke Universiteit Leuven)

    [24]

    Yang H, Zhang Q G, Chen M 2005 Acta Phys. Sin. 54 3740 (in Chinese) [杨 弘、张清光、陈 民 2005 物理学报 54 3740]

    [25]
    [26]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. Let. 101 025502

    [27]
    [28]

    Kazaryan A, Wang Y, Dregia S A, Patton B R 2002 Acta Mater. 50 2491

    [29]
    [30]

    Chan J W, Hilliard J E 1958 J. Chem. Phy. 28 258

    [31]
    [32]
    [33]

    Encyclopedia Britannica (Encyclopedia Britannica, Inc., Chicago, IL)

    [34]

    Zong Y P, Wang M T, Guo W 2009 Acta Phys. Sin. 58 S161 (in Chinese) [宗亚平、王明涛、郭 巍 2009 物理学报 58 S161]

    [35]
    [36]
    [37]

    Chen L Q, Shen J 1998 Comput. Phys. Commun. 108 147

    [38]

    Fan D, Chen L Q, Chen S P 1997 Mater. Sci. Eng. A 238 78

    [39]
    [40]
    [41]

    Chen Q, Ma N, Wu K S, Wang Y Z 2004 Scripta Mater. 50 471

    [42]

    Wei C Y, Gao Y J, Zhang L N 2008 Chin. J. Nonfer. Metal. 18 132 (in Chinese) [魏承炀、高英俊、张丽娜 2008 中国有色金属学报 18 132]

    [43]
    [44]
    [45]

    Grest G S, Anderson M P 1988 Phys. Rev. B 38 4752

    [46]
    [47]

    Anderson M P, Srolovitz D J, Grest G S, Sahni P S 1984 Acta Metal. 32 783

    [48]

    Song X Y, Liu G Q, He Y Z 1998 Prog. Natur. Sci. 8 337 (in Chinese) [宋晓艳、刘国权、何宜柱 1998 自然科学进展 8 337]

    [49]
    [50]

    Chen D Q, Zheng Z Q, Liu Z Y, Li S C 2003 Acta Metall. Sin. 39 1238 (in Chinese) [陈大钦、郑子樵、刘祖耀、李世晨 2003 金属学报 39 1238]

    [51]
  • [1] 廖宇轩, 申文龙, 吴学志, 喇永孝, 柳文波. 陶瓷型复合燃料烧结过程的相场模拟研究. 物理学报, 2024, 73(21): 210201. doi: 10.7498/aps.73.20241112
    [2] 刘钟磊, 曹津铭, 王智, 赵宇宏. 相场法探究铁电体涡旋拓扑结构与准同型相界. 物理学报, 2023, 72(3): 037702. doi: 10.7498/aps.72.20221898
    [3] 姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪. 外加应力作用下 UO2 中空洞演化过程的相场模拟. 物理学报, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [4] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [5] 张军, 陈文雄, 郑成武, 李殿中. γ-α相变中不同晶界特征下铁素体生长形貌的相场模拟. 物理学报, 2017, 66(7): 070701. doi: 10.7498/aps.66.070701
    [6] 郭春文, 李俊杰, 马渊, 王锦程. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律. 物理学报, 2015, 64(14): 148101. doi: 10.7498/aps.64.148101
    [7] 王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究. 物理学报, 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [8] 张宪刚, 宗亚平, 王明涛, 吴艳. 晶粒生长演变相场法模拟界面表达的物理模型. 物理学报, 2011, 60(6): 068201. doi: 10.7498/aps.60.068201
    [9] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [10] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 物理学报, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [11] 陈玉娟, 陈长乐. 相场法模拟对流速度对上游枝晶生长的影响. 物理学报, 2008, 57(7): 4585-4589. doi: 10.7498/aps.57.4585
    [12] 冯 力, 王智平, 路 阳, 朱昌盛. 二元合金多晶粒的枝晶生长的等温相场模型. 物理学报, 2008, 57(2): 1084-1090. doi: 10.7498/aps.57.1084
    [13] 李俊杰, 王锦程, 许 泉, 杨根仓. 外来夹杂物颗粒对枝晶生长形态影响的相场法研究. 物理学报, 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [14] 路 阳, 王 帆, 朱昌盛, 王智平. 等温凝固多晶粒生长相场法模拟. 物理学报, 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [15] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [16] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 物理学报, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [17] 段 鹤, 郑毓峰, 张校刚, 孙言飞, 董有忠. 水热法合成FeS2粉晶及其生长热动力学的研究. 物理学报, 2005, 54(4): 1659-1664. doi: 10.7498/aps.54.1659
    [18] 黄 锐, 林璇英, 余云鹏, 林揆训, 姚若河, 黄文勇, 魏俊红, 王照奎, 余楚迎. 多晶硅薄膜低温生长中晶粒大小的控制. 物理学报, 2004, 53(11): 3950-3955. doi: 10.7498/aps.53.3950
    [19] 张建民, 徐可为. 银和铜膜中异常晶粒生长和织构变化的实验研究. 物理学报, 2003, 52(1): 145-149. doi: 10.7498/aps.52.145
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  14389
  • PDF下载量:  2174
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-31
  • 修回日期:  2011-01-11
  • 刊出日期:  2011-05-05

/

返回文章
返回