搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于场致发射阴极阵列的太赫兹源的物理机理研究

刘维浩 张雅鑫 胡旻 周俊 刘盛纲

引用本文:
Citation:

基于场致发射阴极阵列的太赫兹源的物理机理研究

刘维浩, 张雅鑫, 胡旻, 周俊, 刘盛纲

Mechanism study of a THz source using field emission array

Liu Wei-Hao, Zhang Ya-Xin, Hu Min, Zhou Jun, Liu Sheng-Gang
PDF
导出引用
  • 本文对一种基于场致发射阴极阵列(FEA)的太赫兹辐射源的物理机理进行了理论分析和粒子模拟验证. 采用场匹配法分析了器件的高频场结构, 确定模作为器件的最优工作模式; 利用线性理论分析了器件的注波互作用过程, 揭示了高频场对FEA阴极发射电流的预调制作用以及电子在阴阳极间隙的渡越时间效应是器件起振的物理原因; 分析得出了模起振条件; 粒子模拟结果与理论分析具有较好的一致性.
    The micro-vacuum electronic device is one of the most promising sources for the generation of high power THz-wave radiations. In this paper, the systematical theoretical analyses and computer simulations on the physical mechanism of a kind of micro-vacuum electronic THz radiation source based on the cathode of field-emission array (FEA) are carried out. The mode matching method is used to study the electromagnetic characteristics of the structure, and -mode is confirmed to be an optimal operation mode for its field distribution. Linear theory (small signal theory) is used to analyze the beam-wave interaction of this kind of source, and the starting condition of the -mode oscillation is derived. The premodulation of electron beam emitted from FEA and the electron transit time effect in the interaction gap are the physical cause of the electromagnetic oscillation. These results are well verified by the computer simulations.
    • 基金项目: 国家自然科学基金青年科学基金项目(批准号: 61001031)资助的课题.
    • Funds: Project supported by the National Natural Science Young Foundation of China (Grant No. 61001031).
    [1]

    Liu S G 2006 China Basic Science 1 7 (in Chanese) [刘盛纲 2006 中国基础科学 1 7]

    [2]

    Siegel P H 2002 IEEE transactions on Microwave Theory and Techniques 50 91

    [3]

    Bradley Ferguson, Zhang X C 2003 Phys. 32 286 (in Chiense) [Bradley Ferguson, 张希成 2003 物理 32 286]

    [4]

    Sun B, Yao J Q 2006 Chinese Journal of Lasers 33 1349 (in Chanese) [孙博, 姚建铨 2006 中国激光 33 1349].

    [5]

    Cao J C 2006 Phys. 35 632 (in Chiense) [曹俊诚 2006 物理 35 632]

    [6]

    Zhang R, Cao J C 2010 Acta Phys. Sin. 59 3294 (in Chiense) [张戎, 曹俊诚 2010 物理学报 59 3294]

    [7]

    Liu H, Xu D G, Yao J Q 2008 Acta Phys. Sin. 57 5662 (in Chiense) [刘欢, 徐德刚, 姚建铨 2008 物理学报 57 5662]

    [8]

    Wang Y Y, Zhang C H, Ma J L, Jin B B, Xu W W, Kang L, Chen J, Wu P H 2010 Acta Phys. Sin. 58 6884 (in Chiense) [王媛媛, 张彩虹, 马金龙, 金飙兵, 许伟伟, 康琳, 陈健, 吴培亨 2010 物理学报 58 6884]

    [9]

    Kohler R, Tredicucci A, Beltram F 2002 Nature 417 156

    [10]

    Schmuttenmaer C A 2008 International Journal of Terahertz Science and Technology 1 1

    [11]

    Booske J H 2001 IEEE International Conference on Plasma Science p O1E5

    [12]

    Schwoebel P R, Spindt C A, Holland C E 2005 J. Vac. Sci. Technol. B 23 691

    [13]

    Vishnu Srivastava 2008 Journal of Physics: Conference Series 114 012015

    [14]

    Liao F J 2003 Acta Elets. Sin. 31 1361 (in Chinese) [廖复疆 2003 电子学报 31 1361]

    [15]

    Liao F J 2006 Acta Elets. Sin. 34 513 (in Chinese) [廖复疆 2006 电子学报 34 513]

    [16]

    Spindt C A, Holland C E, Rosengreen A, Ivor Brodie 1991 IEEE Trans. on ED 38 2355

    [17]

    Qin H F, Guo T L 2008 Acta Phys. Sin. 57 1224 (in Chiense) [覃华芳, 郭太良 2008 物理学报 57 1224]

    [18]

    Wang Y, Wu Q, Shi w, He X J, Yin J H 2009 Acta Phys. Sin. 58 924 (in Chiense) [王玥, 吴群, 施卫, 贺训军, 殷景华 2009 物理学报 58 924]

    [19]

    Wang Y, Wu Q, Wu Y M, Bo J H, Wang D X, Wang Y, Li L W 2011 Acta Phys. Sin. 60 057801 (in Chiense) [王玥, 吴群, 吴昱明, 博佳辉, 王东兴, 王岩, 李乐伟 2011 物理学报 60 057801]

    [20]

    Lin M C, Huang K H, Lu P S, Lin P Y, Jao R F 2005 J. Vac. Sci. Technol. B 23 849

    [21]

    Lin M C, Lu P S 2005 J. Vac. Sci. Technol. B 23 636

    [22]

    Lin M C, Lu P S 2007 J. Vac. Sci. Technol. B 25 631

    [23]

    Fowler R H, Nordheim L W 1929 Proc. R. Soc. London, Ser. A 119 173

    [24]

    Nordheim L W 1928 Proc. R. Soc. London, Ser. A 121 626

    [25]

    Busta, Heinz H, Spindt, Charles A 1991 IEEE Transactions on Electron Devices 38 2558

    [26]

    Zhang Z T 1980 Principles of Microwave Electronics (II) (Beijing: National Defence Industry Press) p113---p116 (in Chanese) [张兆镗 1980 微波电子管原理(下) (北京: 国防工业出版社) 第113---116页]

    [27]

    Zhou C M, Liu G Z, Liu Y G, Li J Y, Ding W 2007 High Power Microwave Sources (Beijing: Atomic Energy Press) p89---p93 (in Chinese) [周传明, 刘国治, 刘永贵, 李家胤, 丁武 2007 高功率微波源 (北京: 原子能出版社) 第89---93页]

  • [1]

    Liu S G 2006 China Basic Science 1 7 (in Chanese) [刘盛纲 2006 中国基础科学 1 7]

    [2]

    Siegel P H 2002 IEEE transactions on Microwave Theory and Techniques 50 91

    [3]

    Bradley Ferguson, Zhang X C 2003 Phys. 32 286 (in Chiense) [Bradley Ferguson, 张希成 2003 物理 32 286]

    [4]

    Sun B, Yao J Q 2006 Chinese Journal of Lasers 33 1349 (in Chanese) [孙博, 姚建铨 2006 中国激光 33 1349].

    [5]

    Cao J C 2006 Phys. 35 632 (in Chiense) [曹俊诚 2006 物理 35 632]

    [6]

    Zhang R, Cao J C 2010 Acta Phys. Sin. 59 3294 (in Chiense) [张戎, 曹俊诚 2010 物理学报 59 3294]

    [7]

    Liu H, Xu D G, Yao J Q 2008 Acta Phys. Sin. 57 5662 (in Chiense) [刘欢, 徐德刚, 姚建铨 2008 物理学报 57 5662]

    [8]

    Wang Y Y, Zhang C H, Ma J L, Jin B B, Xu W W, Kang L, Chen J, Wu P H 2010 Acta Phys. Sin. 58 6884 (in Chiense) [王媛媛, 张彩虹, 马金龙, 金飙兵, 许伟伟, 康琳, 陈健, 吴培亨 2010 物理学报 58 6884]

    [9]

    Kohler R, Tredicucci A, Beltram F 2002 Nature 417 156

    [10]

    Schmuttenmaer C A 2008 International Journal of Terahertz Science and Technology 1 1

    [11]

    Booske J H 2001 IEEE International Conference on Plasma Science p O1E5

    [12]

    Schwoebel P R, Spindt C A, Holland C E 2005 J. Vac. Sci. Technol. B 23 691

    [13]

    Vishnu Srivastava 2008 Journal of Physics: Conference Series 114 012015

    [14]

    Liao F J 2003 Acta Elets. Sin. 31 1361 (in Chinese) [廖复疆 2003 电子学报 31 1361]

    [15]

    Liao F J 2006 Acta Elets. Sin. 34 513 (in Chinese) [廖复疆 2006 电子学报 34 513]

    [16]

    Spindt C A, Holland C E, Rosengreen A, Ivor Brodie 1991 IEEE Trans. on ED 38 2355

    [17]

    Qin H F, Guo T L 2008 Acta Phys. Sin. 57 1224 (in Chiense) [覃华芳, 郭太良 2008 物理学报 57 1224]

    [18]

    Wang Y, Wu Q, Shi w, He X J, Yin J H 2009 Acta Phys. Sin. 58 924 (in Chiense) [王玥, 吴群, 施卫, 贺训军, 殷景华 2009 物理学报 58 924]

    [19]

    Wang Y, Wu Q, Wu Y M, Bo J H, Wang D X, Wang Y, Li L W 2011 Acta Phys. Sin. 60 057801 (in Chiense) [王玥, 吴群, 吴昱明, 博佳辉, 王东兴, 王岩, 李乐伟 2011 物理学报 60 057801]

    [20]

    Lin M C, Huang K H, Lu P S, Lin P Y, Jao R F 2005 J. Vac. Sci. Technol. B 23 849

    [21]

    Lin M C, Lu P S 2005 J. Vac. Sci. Technol. B 23 636

    [22]

    Lin M C, Lu P S 2007 J. Vac. Sci. Technol. B 25 631

    [23]

    Fowler R H, Nordheim L W 1929 Proc. R. Soc. London, Ser. A 119 173

    [24]

    Nordheim L W 1928 Proc. R. Soc. London, Ser. A 121 626

    [25]

    Busta, Heinz H, Spindt, Charles A 1991 IEEE Transactions on Electron Devices 38 2558

    [26]

    Zhang Z T 1980 Principles of Microwave Electronics (II) (Beijing: National Defence Industry Press) p113---p116 (in Chanese) [张兆镗 1980 微波电子管原理(下) (北京: 国防工业出版社) 第113---116页]

    [27]

    Zhou C M, Liu G Z, Liu Y G, Li J Y, Ding W 2007 High Power Microwave Sources (Beijing: Atomic Energy Press) p89---p93 (in Chinese) [周传明, 刘国治, 刘永贵, 李家胤, 丁武 2007 高功率微波源 (北京: 原子能出版社) 第89---93页]

  • [1] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [2] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [3] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [4] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [5] 许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜. 自旋电子太赫兹源研究进展. 物理学报, 2020, 69(20): 200703. doi: 10.7498/aps.69.20200623
    [6] 曾造金, 胡林林, 马乔生, 蒋艺, 陈洪斌. W波段分布作用速调管的设计和实验研究. 物理学报, 2019, 68(8): 084101. doi: 10.7498/aps.68.20182194
    [7] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射. 物理学报, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [8] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月. 差频可调谐太赫兹技术的新进展. 物理学报, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [9] 左剑, 张亮亮, 巩辰, 张存林. 太赫兹片上系统和基于微纳结构的太赫兹超宽谱源的研究进展. 物理学报, 2016, 65(1): 010704. doi: 10.7498/aps.65.010704
    [10] 田伟, 文岐业, 陈智, 杨青慧, 荆玉兰, 张怀武. 硅基全光宽带太赫兹幅度调制器的研究. 物理学报, 2015, 64(2): 028401. doi: 10.7498/aps.64.028401
    [11] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响. 物理学报, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [12] 刘志强, 常胜江, 王晓雷, 范飞, 李伟. 基于VO2薄膜相变原理的温控太赫兹超材料调制器. 物理学报, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [13] 孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武. 二氧化钒薄膜低温制备及其太赫兹调制特性研究. 物理学报, 2013, 62(1): 017202. doi: 10.7498/aps.62.017202
    [14] 黄敬国, 陆金星, 周炜, 童劲超, 黄志明, 褚君浩. 磷化镓高功率太赫兹共线差频源的研究. 物理学报, 2013, 62(12): 120704. doi: 10.7498/aps.62.120704
    [15] 刘维浩, 张雅鑫, 周俊, 龚森, 刘盛纲. 偏心电子注激励周期加载波导角向非对称模衍射辐射. 物理学报, 2012, 61(23): 234209. doi: 10.7498/aps.61.234209
    [16] 马凤英, 陈明, 刘晓莉, 刘建立, 池泉, 杜艳丽, 郭茂田, 袁斌. 太赫兹波段微腔器件的设计及其特性研究. 物理学报, 2012, 61(11): 114205. doi: 10.7498/aps.61.114205
    [17] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究. 物理学报, 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [18] 高鹏, Booske John H., 杨中海, 李斌, 徐立, 何俊, 宫玉彬, 田忠. 太赫兹折叠波导行波管再生反馈振荡器非线性理论与模拟. 物理学报, 2010, 59(12): 8484-8489. doi: 10.7498/aps.59.8484
    [19] 吴犇, 张会, 朱良栋, 郭澎, 王倩, 高润梅, 常胜江. 基于布拉格光纤的磁场调制液晶太赫兹开关. 物理学报, 2009, 58(3): 1838-1843. doi: 10.7498/aps.58.1838
    [20] 杜 坚, 张 鹏, 刘继红, 李金亮, 李玉现. 含δ势垒的铁磁/半导体/铁磁异质结中的自旋输运和渡越时间. 物理学报, 2008, 57(11): 7221-7227. doi: 10.7498/aps.57.7221
计量
  • 文章访问数:  6119
  • PDF下载量:  480
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-25
  • 修回日期:  2011-09-21
  • 刊出日期:  2012-06-05

/

返回文章
返回