搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合可激发介质中螺旋波的控制研究

周振玮 陈醒基 田涛涛 唐国宁

引用本文:
Citation:

耦合可激发介质中螺旋波的控制研究

周振玮, 陈醒基, 田涛涛, 唐国宁

Study on the control of spiral waves in coupled excitable media

Zhou Zhen-Wei, Chen Xing-Ji, Tian Tao-Tao, Tang Guo-Ning
PDF
导出引用
  • 采用Bär模型研究了三层耦合可激发介质中螺旋波的控制. 相邻层之间采用双向耦合. 利用加在第二层介质上的局域周期信号产生的平面波来消除螺旋波. 数值模拟表明: 只有当三层介质的耦合满足一定条件才可能实现螺旋波的控制, 可以通过耦合互补方式实现螺旋波的控制; 平面波与低频螺旋波的相互作用可以产生高频螺旋波, 导致螺旋波不能被消除; 存在优化的驱动宽度, 过大或过小的驱动宽度需要增加第一、三层介质的耦合强度. 观察到控制结果依赖控制时机的现象. 研究结果可用于植入式心脏除颤器的设计.
    The control of spiral waves in three-layer coupled excitable media is studied by using the Bär model. The bidirectional coupling between adjacent layers is adopted. We use planar waves generated by a local periodic signal added to the second layer to eliminate spiral waves in the media. The numerical results show that when the couplings among three layer media meet some conditions the spiral waves in the media can be controlled. The control of spiral waves may be achieved by using the complementary coupling strategy. The interaction between planar wave and low-frequency spiral wave can produce high-frequency spiral wave, leading to failure to eliminate spiral waves. There exists an optimal drive width. Both larger and smaller drive width may need larger coupling strength between the first and third layers. The control results depending on the control opportunity are observed. We hope that this study will contribute to the design of the implantable cardioverter defibrillator.
    • 基金项目: 国家自然科学基金(批准号: 11165004)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11165004).
    [1]

    Witkowski F X, Joshua L L, Penkoske P A, Giles W R, Spano M L, Ditto W L, Winfree A T 1998 Nature 392 78

    [2]

    Gray R A, Jalife J, Panfilov A V, Baxter W T, Cabo C, Davidenko J M, Pertsov A M 1995 Science 270 1222

    [3]

    Yuan G Y, Xu L, Xu A G, Wang G R, Yang S P 2011 Chaos, Solitons and Fractals 44 728

    [4]

    Hendrey M, Ott E, Antonsen Jr T M 2000 Phys. Rev. E 61 4943

    [5]

    Wang C N, Yang L J, Yuan L H, Ma J 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3913

    [6]

    Ma J, Tang J, Wang C N, Jia Y 2011 Int. J. Bifurc. Chaos 21 587

    [7]

    Wang Q Y, Perc M, Duan Z S, Chen G R 2008 Phys. Lett. A 372 5681

    [8]

    Yuan G Y, Wang G R, Chen S G 2005 Commun. Theor. Phys. 44 858

    [9]

    Cao Z J, Li P F, Zhang H, Xie F G, Hu G 2007 Chaos 17 015107

    [10]

    de la Casa M A, de la Rubia F J, Ivanov P C 2007 Chaos 17 015109

    [11]

    Cao Z J, Zhang H, Xie F G, Hu G 2006 Europhys. Lett. 75 875

    [12]

    Zhong M, Tang G N 2010 Acta Phys. Sin. 59 3070 (in Chinese) [钟敏, 唐国宁 2010 物理学报 59 3070]

    [13]

    Ma J, Jia Y, Yi M, Tang J, Xia Y F 2009 Chaos, Solitons and Fractals 41 1331

    [14]

    Sakaguchi H, Fujimoto T 2003 Phys. Rev. E 67 067202

    [15]

    Zykov V S, Mikhailov A S, Müller S C 1997 Phys. Rev. Lett. 78 3398

    [16]

    Qian Y, Song X Y, Shi W, Chen G Z, Xue Y 2006 Acta Phys. Sin. 55 4420 (in Chinese) [钱郁, 宋宣玉, 时伟, 陈光旨, 薛郁 2006 物理学报 55 4420]

    [17]

    Gray R A , Chattipakorn N 2005 Proc. Natl. Acad. Sci. U.S.A. 102 4672

    [18]

    Gao J Z, Xie L L, Xie W M, Gao J H 2011 Acta Phys. Sin. 60 080503 (in Chinese) [高加振, 谢玲玲, 谢伟苗, 高继华 2011 物理学报 60 080503]

    [19]

    Piller L W 1970 Electronic Instrumentation Theory of Cardiac Technology (London: Staples Press)

    [20]

    Walker R G, Koster R W, Sun C, Moffat G, Barger J, Dodson P P, Chapman F W 2009 Resuscitation 80 773

    [21]

    Stamp A T, Osipov G V, Collins J J 2002 Chaos 12 931

    [22]

    Allessie M, Kirchhof C, Scheffer G J, Chorro F, Brugada J 1991 Circulation 84 1689

    [23]

    Yu C G, Bai R, Chen D L, Huang Y 2008 Cardiac Electrophysiology Basic and Clinical (WuHan: Huazhong University of Science and Technology Press) p4 (in Chinese) [余承高, 白融, 陈栋梁, 黄勇 2008 心脏电生理学基础与临床 (武汉: 华中科技大学出版社) 第4页]

    [24]

    Antzelevitch C 2001 Cardiovascular Research 50 426

    [25]

    Wang J M, Xue Y 2011 International Conference on Network Computing and Information Security Guilin, China, May 14-15, 2011 pp49-53

    [26]

    Yuan G Y, Yang S P, Wang G R, Chen S G 2005 Acta Phys. Sin. 54 1510 (in Chinese) [袁国勇, 杨世平, 王光瑞, 陈式刚 2005 物理学报 54 1510]

    [27]

    Li G Z, Chen Y Q, Tang G N 2012 Acta Phys. Sin. 61 020502 (in Chinese) [黎广钊, 陈咏琪, 唐国宁 2012 物理学报 61 020502]

    [28]

    Bär M, Eiswirth M 1993 Phys. Rev. E 48 R1635

    [29]

    Li X C, Wu X Y, Zhang S, Zhou Z H, Li L, Liang Z G, Li W M 2008 Chinese Journal of Cardiac Pacing and Electrophysiology 22 347 (in Chinese) [李秀春, 吴晓羽, 张姝, 周中华, 李磊, 梁兆光, 李为民 2008 中国心脏起搏与心电生理杂志 22 347]

  • [1]

    Witkowski F X, Joshua L L, Penkoske P A, Giles W R, Spano M L, Ditto W L, Winfree A T 1998 Nature 392 78

    [2]

    Gray R A, Jalife J, Panfilov A V, Baxter W T, Cabo C, Davidenko J M, Pertsov A M 1995 Science 270 1222

    [3]

    Yuan G Y, Xu L, Xu A G, Wang G R, Yang S P 2011 Chaos, Solitons and Fractals 44 728

    [4]

    Hendrey M, Ott E, Antonsen Jr T M 2000 Phys. Rev. E 61 4943

    [5]

    Wang C N, Yang L J, Yuan L H, Ma J 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 3913

    [6]

    Ma J, Tang J, Wang C N, Jia Y 2011 Int. J. Bifurc. Chaos 21 587

    [7]

    Wang Q Y, Perc M, Duan Z S, Chen G R 2008 Phys. Lett. A 372 5681

    [8]

    Yuan G Y, Wang G R, Chen S G 2005 Commun. Theor. Phys. 44 858

    [9]

    Cao Z J, Li P F, Zhang H, Xie F G, Hu G 2007 Chaos 17 015107

    [10]

    de la Casa M A, de la Rubia F J, Ivanov P C 2007 Chaos 17 015109

    [11]

    Cao Z J, Zhang H, Xie F G, Hu G 2006 Europhys. Lett. 75 875

    [12]

    Zhong M, Tang G N 2010 Acta Phys. Sin. 59 3070 (in Chinese) [钟敏, 唐国宁 2010 物理学报 59 3070]

    [13]

    Ma J, Jia Y, Yi M, Tang J, Xia Y F 2009 Chaos, Solitons and Fractals 41 1331

    [14]

    Sakaguchi H, Fujimoto T 2003 Phys. Rev. E 67 067202

    [15]

    Zykov V S, Mikhailov A S, Müller S C 1997 Phys. Rev. Lett. 78 3398

    [16]

    Qian Y, Song X Y, Shi W, Chen G Z, Xue Y 2006 Acta Phys. Sin. 55 4420 (in Chinese) [钱郁, 宋宣玉, 时伟, 陈光旨, 薛郁 2006 物理学报 55 4420]

    [17]

    Gray R A , Chattipakorn N 2005 Proc. Natl. Acad. Sci. U.S.A. 102 4672

    [18]

    Gao J Z, Xie L L, Xie W M, Gao J H 2011 Acta Phys. Sin. 60 080503 (in Chinese) [高加振, 谢玲玲, 谢伟苗, 高继华 2011 物理学报 60 080503]

    [19]

    Piller L W 1970 Electronic Instrumentation Theory of Cardiac Technology (London: Staples Press)

    [20]

    Walker R G, Koster R W, Sun C, Moffat G, Barger J, Dodson P P, Chapman F W 2009 Resuscitation 80 773

    [21]

    Stamp A T, Osipov G V, Collins J J 2002 Chaos 12 931

    [22]

    Allessie M, Kirchhof C, Scheffer G J, Chorro F, Brugada J 1991 Circulation 84 1689

    [23]

    Yu C G, Bai R, Chen D L, Huang Y 2008 Cardiac Electrophysiology Basic and Clinical (WuHan: Huazhong University of Science and Technology Press) p4 (in Chinese) [余承高, 白融, 陈栋梁, 黄勇 2008 心脏电生理学基础与临床 (武汉: 华中科技大学出版社) 第4页]

    [24]

    Antzelevitch C 2001 Cardiovascular Research 50 426

    [25]

    Wang J M, Xue Y 2011 International Conference on Network Computing and Information Security Guilin, China, May 14-15, 2011 pp49-53

    [26]

    Yuan G Y, Yang S P, Wang G R, Chen S G 2005 Acta Phys. Sin. 54 1510 (in Chinese) [袁国勇, 杨世平, 王光瑞, 陈式刚 2005 物理学报 54 1510]

    [27]

    Li G Z, Chen Y Q, Tang G N 2012 Acta Phys. Sin. 61 020502 (in Chinese) [黎广钊, 陈咏琪, 唐国宁 2012 物理学报 61 020502]

    [28]

    Bär M, Eiswirth M 1993 Phys. Rev. E 48 R1635

    [29]

    Li X C, Wu X Y, Zhang S, Zhou Z H, Li L, Liang Z G, Li W M 2008 Chinese Journal of Cardiac Pacing and Electrophysiology 22 347 (in Chinese) [李秀春, 吴晓羽, 张姝, 周中华, 李磊, 梁兆光, 李为民 2008 中国心脏起搏与心电生理杂志 22 347]

  • [1] 李倩昀, 白婧, 唐国宁. 两层老化心肌组织中螺旋波和时空混沌的控制. 物理学报, 2021, 70(9): 098202. doi: 10.7498/aps.70.20201294
    [2] 潘军廷, 何银杰, 夏远勋, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [3] 刘亚琴, 杨士莪, 张海刚, 王笑寒. 变声速弹性沉积层下压缩波与剪切波的耦合影响. 物理学报, 2018, 67(23): 234303. doi: 10.7498/aps.67.20181600
    [4] 李倩昀, 黄志精, 唐国宁. 通过抑制波头旋转消除心脏中的螺旋波和时空混沌. 物理学报, 2018, 67(24): 248201. doi: 10.7498/aps.67.20181291
    [5] 王小艳, 汪芃, 李倩昀, 唐国宁. 用晚钠电流终止心脏中的螺旋波和时空混沌. 物理学报, 2017, 66(13): 138201. doi: 10.7498/aps.66.138201
    [6] 潘飞, 王小艳, 汪芃, 黎维新, 唐国宁. 通过放慢钠通道开闭控制心脏中的螺旋波和时空混沌. 物理学报, 2016, 65(19): 198201. doi: 10.7498/aps.65.198201
    [7] 徐莹, 王春妮, 靳伍银, 马军. 梯度耦合下神经元网络中靶波和螺旋波的诱发研究. 物理学报, 2015, 64(19): 198701. doi: 10.7498/aps.64.198701
    [8] 潘飞, 黎维新, 王小艳, 唐国宁. 用低通滤波方法终止心脏组织中的螺旋波和时空混沌. 物理学报, 2015, 64(21): 218202. doi: 10.7498/aps.64.218202
    [9] 李伟恒, 黎维新, 潘飞, 唐国宁. 两层耦合可激发介质中螺旋波转变为平面波. 物理学报, 2014, 63(20): 208201. doi: 10.7498/aps.63.208201
    [10] 陈醒基, 乔成功, 王利利, 周振玮, 田涛涛, 唐国宁. 间接延迟耦合可激发介质中螺旋波的演化. 物理学报, 2013, 62(12): 128201. doi: 10.7498/aps.62.128201
    [11] 乔成功, 王利利, 李伟恒, 唐国宁. 钾扩散耦合引起的心脏中螺旋波的变化. 物理学报, 2013, 62(19): 198201. doi: 10.7498/aps.62.198201
    [12] 周振玮, 王利利, 乔成功, 陈醒基, 田涛涛, 唐国宁. 用同步复极化终止心脏中的螺旋波和时空混沌. 物理学报, 2013, 62(15): 150508. doi: 10.7498/aps.62.150508
    [13] 颜森林. 外部光注入空间耦合半导体激光器高维混沌系统的增频与控制研究. 物理学报, 2012, 61(16): 160505. doi: 10.7498/aps.61.160505
    [14] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌. 物理学报, 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [15] 邝玉兰, 唐国宁. 心脏中的螺旋波和时空混沌的抑制研究. 物理学报, 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [16] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步. 物理学报, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [17] 钟敏, 唐国宁. 用钙离子通道激动剂抑制心脏组织中的螺旋波和时空混沌. 物理学报, 2010, 59(5): 3070-3076. doi: 10.7498/aps.59.3070
    [18] 钟敏, 唐国宁. 局域反馈抑制心脏中的螺旋波和时空混沌. 物理学报, 2010, 59(3): 1593-1599. doi: 10.7498/aps.59.1593
    [19] 马 军, 靳伍银, 易 鸣, 李延龙. 时变反应扩散系统中螺旋波和湍流的控制. 物理学报, 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [20] 林 敏, 黄咏梅, 方利民. 耦合双稳系统的随机共振控制. 物理学报, 2008, 57(4): 2048-2052. doi: 10.7498/aps.57.2048
计量
  • 文章访问数:  6035
  • PDF下载量:  561
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-03
  • 修回日期:  2012-05-23
  • 刊出日期:  2012-11-05

/

返回文章
返回