搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

草原下垫面湍流动量和感热相似性函数及总体输送系数的特征

岳平 张强 牛生杰 王润元 孙旭映 王胜

引用本文:
Citation:

草原下垫面湍流动量和感热相似性函数及总体输送系数的特征

岳平, 张强, 牛生杰, 王润元, 孙旭映, 王胜

The characteristics of turbulent momentum and heat similarity function and bulk transfer coefficient over grassland surface

Yue Ping, Zhang Qiang, Niu Sheng-Jie, Wang Run-Yuan, Sun Xu-Ying, Wang Sheng
PDF
导出引用
  • 地表动量和热量输送对全球气候和大气环流变化具有重要影响, Monin-Obukhov (M-O)相似性函数是计算近地层动量和热量通量的重要手段, 获得准确的总体输送系数是提高大气模式模拟能力的关键环节. 本文利用锡林郭勒草原2008年春季近地层湍流通量观测资料, 对M-O相似性函数进行了修订, 拟合出了经验公式, 并建立了10 m高度水平风速与动量总体输送系数和感热总体输送系数的关系. 研究发现, 修订的M-O相似性函数计算的湍流通量与涡旋相关法测量值相比, 动量通量低估了10.8%, 感热通量高估了6.5%; Businger-Dyer通量廓线关系计算的湍流通量与涡旋相关法测量值相比, 动量通量低估了37.0%, 感热通量高估了16.1%. 近地层大气层结不稳定时, 动量总体输送系数与10 m高度水平风速满足关系CD=0.009U-0.322, 感热总体输送系数与10 m高度水平风速满足CH=0.184U-1.978; 近地层大气层结稳定时, 总体输送系数与10 m高度水平风速符合对数规律, 并随风速增大趋于中性或近中性. 修订的M-O相似性函数可显著提高平均梯度观测资料计算草原下垫面湍流通量的准确性; 总体输送系数与10 m高度水平风关系的建立, 为描述草原下垫面湍流输送特征提供了可靠的参数化方案.
    The turbulent momentum and sensible heat transfer over land surface have a notable influence on the change of global climate and atmospheric circulation, and Monin-Obukhov similarity function is a most important method to calculate the turbulent momentum and sensible heat flux near the surface, and ascertaining the right bulk transfer coefficient is a most effective way of improving the atmospheric model simulation capabilities. The characteristic of Monin-Obukhov similarity function is analyzed and the empirical formula is fitted, and the changes of bulk transfer coefficients of momentum and sensible heat over grassland with mean wind speed at 10 m high are discussed by using the data of the flux observations over Xilin Gol grassland in Spring 2008. Comparison with the observation values by eddy correlation method shows that the revised Monin-Obukhov similarity function underestimates the momentum flux by 10.8% and over estimates the sensible heat flux by 6.5%, but the typical Businger-Dyer similarity function underestimates the momentum flux by 37.0% and over estimates the sensible heat flux by 16.1%. Under unstable stratification, the bulk transfer coefficients of momentum (CD) and sensible heat (CH) vary with mean wind speed at 10 m high (U) according to the power law, which take the forms CD=0.009U-0.322 and CH=0.184U-1.978 respectively. Under stable stratification, the bulk transfer coefficients are found to increase in the manner of the logarithm law over grassland surface and tend to neutral or nearly neutral values with wind speed increasing. The revised Monin-Obukhov similarity function can significantly improve the accuracy of turbulent momentum and sensible heat flux computed by average gradient data, and the relations between bulk transfer coefficients and wind speed at 10 m high provide the useful parameterization schemes for accurately expressing the transportation characteristics of near surface turbulence.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB955304, 2013CB430206)、国家自然科学基金(批准号: 41075008, 40830957)、中国博士后基金(批准号: 20110490854)和中国气象局干旱气象科研基金(批准号: KYS2011BSKY01)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB955304, 2013CB430206), the National Natural Science Foundation of China (Grant Nos. 41075008, 40830957), China Postdoctoral Science Foundation (Grant No. 20110490854), and Postdoctoral Science Foundation of the Institute of Arid Meteorology of CMA (Grant No. KYS2011BSKY01).
    [1]

    Monin A S, Obukhov A M 1954 Tr. Akad. Nauk. SSSR Geofiz. Inst. 24 163

    [2]

    Swinbank W C 1964 Quart. J. Roy. Meteorol. Soc. 90 119

    [3]

    Swinbank W C, Dyer A J 1968 Quart. J. Roy. Meteorol. Soc. 93 494

    [4]

    Tschalikov D V 1968 Trudy GGO 207 170

    [5]

    Businger J A, Wangaard J C, Izumi Y, Bradley E F 1971 J. Atmos. Sci. 28 181

    [6]

    Dyer A J 1974 Boundary-Layer Meteorol. 7 363

    [7]

    Miller M J, Beljaars A C M, Palmer T N 1992 J. Climate. 5 418

    [8]

    Zhang Q, Huang R H, Tian H 2003 Adv. Atmos. Sci. 20 111

    [9]

    Foken T 2006 Boundary-Layer Meteorol. 119 431

    [10]

    Sorbjan Z 1989 Structure of the Atmospheric Boundary Layer (1st Edn.) (New Jersey: Prentice-Hall Inc.) p317

    [11]

    Zhang Q, Wei G A, Huang R H, Cao X Y 2002 Sci. China D 45 468

    [12]

    Zhang J A, Black P G, French J R, Drennan W M 2008 Geophys. Res. Lett. 35 L14813

    [13]

    Alappattu D, Subrahamanyam D, Kunhikrishnan P, Ramachandran R, Somayaji K, Venkatesh R, Bhat G, Singh A 2008 Boundary-Layer Meteorol. 126 297

    [14]

    Bhat G S, Thomas M A, Raju J V S, Chandrasekhara C P 2002 Boundary-Layer Meteorol. 106 263

    [15]

    Piers S, Forrest H, Ranson K J, Hank M, Bob K, Dennis B, den Gerry H, Josef C, Michael R G, Barry G, Patrick C, Dennis L, Wickland Diane E 1994 Bull. Ame. Meteorol. Sci. 76 1549

    [16]

    De Ridder K 2010 Boundary-Layer Meterol. 134 257

    [17]

    Rao K G, Narasimha R 1996 Geophys. Res. Lett. 23 2617

    [18]

    Mahrt L, Vickers D, Sun J L, Jensen N O, Jorgense H, Pardyjak E, Fernando H 2001 Boundary-Layer Meteorol. 99 249

    [19]

    Yue P, Niu S J, Hu Y Q, Zhang Q 2010 Sci. China Earth Sci. 53 773

    [20]

    Stull R B 1988 An Introduction to Boundary Layer Meteorology (1st Edn.) (Dordrecht: Kluwer Academic Publishers) p280

    [21]

    Miao M Q, Qian J P 1996 Acta Meteorol. Sin. 54 95 (in Chinese) [苗曼倩, 钱峻屏 1996 气象学报 54 95]

    [22]

    Deardorff J W 1978 J. Geophys. Res. 83 1889

    [23]

    Guilloteay E 1998 Boundary-Layer Meteorol. 87 147

    [24]

    Ban J, Gao Z, Lenschow D H 2010 J. Geophys. Res. 115 D01106

  • [1]

    Monin A S, Obukhov A M 1954 Tr. Akad. Nauk. SSSR Geofiz. Inst. 24 163

    [2]

    Swinbank W C 1964 Quart. J. Roy. Meteorol. Soc. 90 119

    [3]

    Swinbank W C, Dyer A J 1968 Quart. J. Roy. Meteorol. Soc. 93 494

    [4]

    Tschalikov D V 1968 Trudy GGO 207 170

    [5]

    Businger J A, Wangaard J C, Izumi Y, Bradley E F 1971 J. Atmos. Sci. 28 181

    [6]

    Dyer A J 1974 Boundary-Layer Meteorol. 7 363

    [7]

    Miller M J, Beljaars A C M, Palmer T N 1992 J. Climate. 5 418

    [8]

    Zhang Q, Huang R H, Tian H 2003 Adv. Atmos. Sci. 20 111

    [9]

    Foken T 2006 Boundary-Layer Meteorol. 119 431

    [10]

    Sorbjan Z 1989 Structure of the Atmospheric Boundary Layer (1st Edn.) (New Jersey: Prentice-Hall Inc.) p317

    [11]

    Zhang Q, Wei G A, Huang R H, Cao X Y 2002 Sci. China D 45 468

    [12]

    Zhang J A, Black P G, French J R, Drennan W M 2008 Geophys. Res. Lett. 35 L14813

    [13]

    Alappattu D, Subrahamanyam D, Kunhikrishnan P, Ramachandran R, Somayaji K, Venkatesh R, Bhat G, Singh A 2008 Boundary-Layer Meteorol. 126 297

    [14]

    Bhat G S, Thomas M A, Raju J V S, Chandrasekhara C P 2002 Boundary-Layer Meteorol. 106 263

    [15]

    Piers S, Forrest H, Ranson K J, Hank M, Bob K, Dennis B, den Gerry H, Josef C, Michael R G, Barry G, Patrick C, Dennis L, Wickland Diane E 1994 Bull. Ame. Meteorol. Sci. 76 1549

    [16]

    De Ridder K 2010 Boundary-Layer Meterol. 134 257

    [17]

    Rao K G, Narasimha R 1996 Geophys. Res. Lett. 23 2617

    [18]

    Mahrt L, Vickers D, Sun J L, Jensen N O, Jorgense H, Pardyjak E, Fernando H 2001 Boundary-Layer Meteorol. 99 249

    [19]

    Yue P, Niu S J, Hu Y Q, Zhang Q 2010 Sci. China Earth Sci. 53 773

    [20]

    Stull R B 1988 An Introduction to Boundary Layer Meteorology (1st Edn.) (Dordrecht: Kluwer Academic Publishers) p280

    [21]

    Miao M Q, Qian J P 1996 Acta Meteorol. Sin. 54 95 (in Chinese) [苗曼倩, 钱峻屏 1996 气象学报 54 95]

    [22]

    Deardorff J W 1978 J. Geophys. Res. 83 1889

    [23]

    Guilloteay E 1998 Boundary-Layer Meteorol. 87 147

    [24]

    Ban J, Gao Z, Lenschow D H 2010 J. Geophys. Res. 115 D01106

  • [1] 陈浩宇, 徐涛, 刘闯, 张子柯, 詹秀秀. 基于高阶信息的网络相似性比较方法. 物理学报, 2024, 73(3): 038901. doi: 10.7498/aps.73.20231096
    [2] 王伟, 出口祥啓, 何永森, 张家忠. 涡脱落热声振荡中相似性及涡声锁频行为. 物理学报, 2019, 68(23): 234303. doi: 10.7498/aps.68.20190663
    [3] 杨剑楠, 刘建国, 郭强. 基于层间相似性的时序网络节点重要性研究. 物理学报, 2018, 67(4): 048901. doi: 10.7498/aps.67.20172255
    [4] 马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁. 高速模型尾迹流场及其电磁散射特性相似性实验研究. 物理学报, 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [5] 李宏宇, 符淙斌, 郭维栋, 马芳. 干旱区不同下垫面能量分配机理及对微气候反馈的研究. 物理学报, 2015, 64(5): 059201. doi: 10.7498/aps.64.059201
    [6] 宋健, 杨联贵, 刘全生. 缓变下垫面和耗散作用的非线性Rossby波. 物理学报, 2014, 63(6): 060401. doi: 10.7498/aps.63.060401
    [7] 王启光, 苏海晶, 支蓉, 冯爱霞. 长江中下游汛期降水模式预测误差相似性及其可预报度. 物理学报, 2014, 63(11): 119202. doi: 10.7498/aps.63.119202
    [8] 姚彤, 张强. 我国北方不同类型下垫面地表反照率特征. 物理学报, 2014, 63(8): 089201. doi: 10.7498/aps.63.089201
    [9] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究. 物理学报, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [10] 付洋洋, 罗海云, 邹晓兵, 王强, 王新新. 棒-板电极下缩比气隙辉光放电相似性的仿真研究. 物理学报, 2014, 63(9): 095206. doi: 10.7498/aps.63.095206
    [11] 唐田田, 张朝民, 张敏. 氢负离子在磁场和金属面附近电子通量分布的研究. 物理学报, 2013, 62(12): 123201. doi: 10.7498/aps.62.123201
    [12] 张强, 李宏宇, 张立阳, 岳平, 史晋森. 陇中黄土高原自然植被下垫面陆面过程及其参数对降水波动的气候响应. 物理学报, 2013, 62(1): 019201. doi: 10.7498/aps.62.019201
    [13] 付洋洋, 罗海云, 邹晓兵, 刘凯, 王新新. 缩比间隙中辉光放电相似性的初步研究. 物理学报, 2013, 62(20): 205209. doi: 10.7498/aps.62.205209
    [14] 岳平, 张强, 李耀辉, 王润元, 王胜, 孙旭映. 半干旱草原下垫面动量和感热总体输送系数参数化关系研究. 物理学报, 2013, 62(9): 099202. doi: 10.7498/aps.62.099202
    [15] 林颖璐, 闫振纲, 杨娟, 王春勇, 卞保民. 噪声信号特征量分布函数相似特性的研究. 物理学报, 2012, 61(10): 100505. doi: 10.7498/aps.61.100505
    [16] 郑雨军, 张兆玉, 张西忠. 单分子体系动力学的高阶累积量相似性. 物理学报, 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [17] 冯 杰, 徐文成, 刘伟慈, 李书贤, 刘颂豪. 高阶色散效应常系数Ginzburg-Landau方程自相似脉冲演化的解析分析. 物理学报, 2008, 57(8): 4978-4983. doi: 10.7498/aps.57.4978
    [18] 龚志强, 封国林. 基于非线性分析方法的多种代用资料的相似性研究. 物理学报, 2007, 56(6): 3619-3629. doi: 10.7498/aps.56.3619
    [19] 童永在, 王西安, 余本海, 胡雪惠. 电光效应的自相似性. 物理学报, 2006, 55(12): 6667-6672. doi: 10.7498/aps.55.6667
    [20] 钟锡华. 自相似结构的谱函数. 物理学报, 1990, 39(6): 59-66. doi: 10.7498/aps.39.59
计量
  • 文章访问数:  5688
  • PDF下载量:  487
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-05
  • 修回日期:  2012-05-18
  • 刊出日期:  2012-11-05

/

返回文章
返回