搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔阳极氧化物的形成效率与纳米孔道的形成机理

朱绪飞 韩华 宋晔 马宏图 戚卫星 路超 徐辰

引用本文:
Citation:

多孔阳极氧化物的形成效率与纳米孔道的形成机理

朱绪飞, 韩华, 宋晔, 马宏图, 戚卫星, 路超, 徐辰

Forming efficiency of porous anodic oxide and formation mechanism of nanopores

Zhu Xu-Fei, Han Hua, Song Ye, Ma Hong-Tu, Qi Wei-Xing, Lu Chao, Xu Chen
PDF
导出引用
  • 多孔型阳极氧化铝(PAA)和多孔阳极氧化钛纳米管因其在诸多领域的广泛应用而备受关注. 然而这类多孔阳极氧化物中纳米孔道的形成机理至今还不清楚, 阳极氧化过程中电流-时间曲线与多孔形貌之间的关系至今无法解释. 本文从致密型阳极氧化铝(CAA)的击穿机理入手,详细对比了CAA和PAA形成过程的区别与内在联系, 从两种氧化膜电流-时间曲线(或电压-时间曲线)的分界点这个全新视角入手, 找出了阳极氧化过程中氧化物形成效率下降的本质原因是电子电流的产生和氧气的析出. 在CAA中球形孔洞的证据充分说明初期的规则孔洞是氧气气泡形成的. 铝在混合电解液中阳极氧化的结果表明, 一旦氧气析出停止,孔道生长就停止并被致密型的氧化物覆盖, 一种新型的复合型氧化膜由此而得. 最终结果表明: 在PAA的形成过程中, 适当的电子电流是氧气析出和孔洞形成的保证, 适当的离子电流是氧化物形成和孔壁生长的保证.
    Porous anodic alumina (PAA) and porous anodic TiO2 nanotubes have received considerable attention because of their applications in a number of fields. The formation mechanisms of nanopores and nanotubes in these porous anodic oxides, however, have remained unclear until now. The interactions between porous structural features and current-time transients in anodizing process cannot be successfully explained. Based on the mechanism of dielectric breakdown of the compact anodic alumina (CAA), the differences and internal relations in their forming processes between CAA and PAA are contrasted in detail. From this innovative standpoint, according to the divergence of PAA and CAA in their current-time curves (or voltage-time curves), two essential causes which induce the decrease of the forming efficiency of oxide in the anodizing process, that is, the generation of the electronic current and the oxygen evolution, are presented in the paper. The evidences of the round hollows within the CAA films, show that the regularly embryo pores result from the oxygen bubbles. According to the aluminum anodizing in the mixed-electrolyte, the results show that once oxygen evolution stopping, the pore growth must be stopped, and the pores must be sealed by the above compact oxide. A novel composite film of the anodic oxide is presented. All of the above conclusively show that in the forming process of PAA, an appropriate magnitude of electronic current ensures the oxygen evolution and the pores formation, an appropriate magnitude of ionic current ensures the oxide formation and growth of pore walls.
    • 基金项目: 国家自然科学基金(批准号:61171043, 51077072)和国家科技重大专项资金 (批准号: 2009ZX01021-002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61171043, 51077072), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009ZX01021-002).
    [1]

    Platschek B, Keilbach A, Bein T 2011 Adv. Mater. 23 2395

    [2]

    Huang C, Jiang J, Lu M, Sun L, Meletis E I, Hao Y 2009 Nano Lett. 9 4297

    [3]

    Gu J J, Han J R, Cheng F W, Zhao G L, Liu L H, Sun H Y 2012 Acta Phys. Sin. 61 097503 (in Chinese) [顾建军, 韩金荣, 成福伟, 赵国良, 刘力虎, 孙会元 2012 物理学报 61 097503]

    [4]

    Wang X L Q, Zhang D X, Zhang H J 2011 Acta Phys. Sin. 60 058104 (in Chinese) [王旭龙琦, 张冬仙, 章海军 2011 物理学报 60 058104]

    [5]

    Li Q, Wang K G, Dang W J, Hui D, Ren Z Y, Bai J T 2010 Acta Phys. Sin. 59 5851(in Chinese) [李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛 2010 物理学报 59 5851]

    [6]

    Wu Z G, Zhang P J, Xu L, Li S K, Wang J, Li X D, Yan P X 2010 Acta Phys. Sin. 59 438 (in Chinese) [吴志国, 张鹏举, 徐亮, 李拴魁, 王君, 李旭东, 闫鹏勋 2010 物理学报 59 438]

    [7]

    Wang C W, Ma B H, Li Y, Chen J B, Wang J, Liu W M 2008 Acta Phys. Sin. 57 5800 (in Chinese) [王成伟, 马保宏, 李燕, 陈建彪, 王建, 刘维民 2008 物理学报 57 5800]

    [8]

    Lin J, Liu K, Chen X F 2011 Small 7 1784

    [9]

    Habazaki H, Teraoka M, Aoki Y, Skeldon P, Thompson G E 2010 Electrochim. Acta 55 3939

    [10]

    Lee K, Kim D, Roy P, Paramasivam I, Birajdar B I, Spiecker E, Schmuki P 2010 J. Am. Chem. Soc. 132 1478

    [11]

    Li S Q, Yin J B, Zhang G M 2010 Sci. China. Chem. 53 1068 (in Chinese) [李仕琦, 尹建波, 张耿民 2010 中国科学: 化学 53 1068]

    [12]

    Wang D A, Liu Y, Yu B, Zhou F, Liu W M 2009 Chem. Mater. 21 1198

    [13]

    Jessensky O, Müller F, Gösele U 1998 Appl. Phys. Lett. 72 1173

    [14]

    Li A P, Müller F, Birner A, Nielsch K, Gösele U 1998 J. Appl. Phys. 84 6023

    [15]

    Nielsch K, Choi J, Schwirn K, Wehrspohn R B, Gösele U 2002 Nano Lett. 2 677

    [16]

    Lee W, Schwirn K, Steinhart M, Pippel E, Scholz R, Gösele U 2008 Nat. Nanotechnol. 3 234

    [17]

    Skeldon P, Thompson G E, Garcia-Vergara S J, Iglesias-Rubianes L, Blanco-Pinzon C E 2006 Electrochem. Solid. St. 9 B47

    [18]

    Garcia-Vergara S J, Skeldon P, Thompson G E, Habazaki H 2006 Electrochim. Acta 52 681

    [19]

    Garcia-Vergara S J, Habazaki H, Skeldon P, Thompson G E 2010 Electrochim. Acta 55 3175

    [20]

    Houser J E, Hebert K R 2009 Nat. Mater. 8 415

    [21]

    Houser J E, Hebert K R 2006 J. Electrochem. Soc. 153 B566

    [22]

    Li D D, Zhao L, Jiang C H, Lu J G 2010 Nano Lett. 10 2766

    [23]

    Li D D, Jiang C H, Jiang J H, Lu J G 2009 Chem. Mater. 21 253

    [24]

    Su Z X, Zhou W Z 2008 Adv. Mater. 20 3663

    [25]

    Su Z X, Bühl M, Zhou W Z 2009 J. Am. Chem. Soc. 131 8697

    [26]

    Su Z X, Zhou W Z 2011 J. Mater. Chem. 21 357

    [27]

    Berger S, Hahn R, Roy P, Schmuki P 2010 Phys. Status Solidi B 247 2424

    [28]

    Roy P, Berger S, Schmuki P 2011 Angew. Chem. Int. Ed. 50 2904

    [29]

    Liu H W, Guo H M, Wang Y L, Shen C M, Yang H T, Wang Y T, Wei L 2004 Acta Phys. Sin. 53 656 (in Chinese) [刘虹雯,郭海明,王业亮,申承民,杨海涛,王雨田,魏龙 2004 物理学报 53 656]

    [30]

    Zhu X F, Han H, Song Y, Duan W Q 2012Acta Phys. Chim. Sin. 28 1291 (in Chinese) [朱绪飞, 韩华, 宋晔, 段文强 2012 物理化学学报 28 1291]

    [31]

    Patermarakis G, Moussoutzanis K 2009 Electrochim. Acta 54 2434

    [32]

    Patermarakis G 2009 J. Electroanal. Chem. 635 39

    [33]

    Keller F, Hunter M S, Robinson D L 1953 J. Electrochem. Soc. 100 411

    [34]

    Diggle J W, Downie T C, Goulding C W 1969 Chem. Rev. 69 365

    [35]

    O'Sullivan J P, Wood G C 1970 Proc. R. Soc. Lond. A 317 511

    [36]

    Thompson G E, Furneaux R C, Wood G C, Richardson J A, Goode J S 1978 Nature 272 433

    [37]

    Thompson G E, Wood G C 1981 Nature 290 230

    [38]

    Furneaux R C, Rigby W R, Davidson A P 1989 Nature 337 147

    [39]

    Parkhutik V P, Shershulsky V I 1992 J. Phys. D: Appl. Phys. 25 1258

    [40]

    Thompson G E 1997 Thin Solid Films 297 192

    [41]

    Masuda H, Hasegwa F, Ono S 1997 J. Electrochem. Soc. 144 L127

    [42]

    Poinern G E J, Ali N, Fawcett D 2011 Materials 4 487

    [43]

    Su Z X, Zhou W Z 2011 J. Mater. Chem. 21 8955

    [44]

    Li Y, Shimada H, Sakairi M, Shigyo K, Takahashi H, Seo M 1997 J. Electrochem. Soc. 144 866

    [45]

    Zhu X F, Liu L, Zhao B C 2003 The Chinese Journal of Nonferrous Metals 13 1031 (in Chinese) [朱绪飞, 刘 霖, 赵宝昌 2003 中国有色金属学报 13 1031]

    [46]

    Macak J M, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P 2007 Curr. Opi. Solid. St. M. 11 3

    [47]

    Ghicov A, Schmuki P 2009 Chem. Commun. 45 2791

    [48]

    Li F Y, Zhang L, Metzger R M 1998 Chem. Mater. 10 2470

    [49]

    Albella J M, Montero I, Martinez-Duart J M 1987 Electrochim. Acta 32 255

    [50]

    Zhu X F, Liu L, Song Y, Jia H, Yu H, Xiao X, Yang X 2008 Mater. Lett. 62 4038

    [51]

    Zhu X F, Liu L, Song Y, Jia H, Yu H, Xiao X, Yang X 2008 Monatsh. Chem. 139 999

    [52]

    Crossland A C, Habazaki H, Shimizu K, Skeldon P, Thompson G E, Wood G C, Zhou X, Smith C J 1999 Corros. Sci. 41 1945

    [53]

    Zhou X, Thompson G E, Habazaki H, Paez M A, Shimizu K, Skeldon P, Wood G C 2000 J. Electrochem. Soc. 147 1747

    [54]

    Habazaki H, Konno H, Shimizu K, Nagata S, Skeldon P, Thompson G E 2004 Corros. Sci. 46 2041

    [55]

    Schwirn K, Lee W, Hillebrand R, Steinhart M, Nielsch K, Gösele U 2008 ACS Nano 2 302

    [56]

    Lee W, Scholz R, Gösele U 2008 Nano Lett. 8 2155

    [57]

    Chung C K, Zhou R X, Liu T Y, Chang W T 2009 Nanotechnology 20 055301

    [58]

    Ispas A, Bund A, Vrublevsky I 2010 J. Solid State Electrochem. 14 2121

    [59]

    Li Y, Ling Z Y, Hu X, Liu Y S, Chang Y 2011 J. Mater. Chem. 21 9661

    [60]

    Li Y, Ling Z Y, Hu X, Liu Y S, Chang Y 2011 Chem. Commun. 47 2173

    [61]

    Zhang R, Jiang K M, Zhu Y, Qi H Y, Ding G Q 2011 Appl. Surf. Sci. 258 586

    [62]

    Patermarakis G, Moussoutzanis K 2011 J. Electroanal. Chem. 659 176

  • [1]

    Platschek B, Keilbach A, Bein T 2011 Adv. Mater. 23 2395

    [2]

    Huang C, Jiang J, Lu M, Sun L, Meletis E I, Hao Y 2009 Nano Lett. 9 4297

    [3]

    Gu J J, Han J R, Cheng F W, Zhao G L, Liu L H, Sun H Y 2012 Acta Phys. Sin. 61 097503 (in Chinese) [顾建军, 韩金荣, 成福伟, 赵国良, 刘力虎, 孙会元 2012 物理学报 61 097503]

    [4]

    Wang X L Q, Zhang D X, Zhang H J 2011 Acta Phys. Sin. 60 058104 (in Chinese) [王旭龙琦, 张冬仙, 章海军 2011 物理学报 60 058104]

    [5]

    Li Q, Wang K G, Dang W J, Hui D, Ren Z Y, Bai J T 2010 Acta Phys. Sin. 59 5851(in Chinese) [李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛 2010 物理学报 59 5851]

    [6]

    Wu Z G, Zhang P J, Xu L, Li S K, Wang J, Li X D, Yan P X 2010 Acta Phys. Sin. 59 438 (in Chinese) [吴志国, 张鹏举, 徐亮, 李拴魁, 王君, 李旭东, 闫鹏勋 2010 物理学报 59 438]

    [7]

    Wang C W, Ma B H, Li Y, Chen J B, Wang J, Liu W M 2008 Acta Phys. Sin. 57 5800 (in Chinese) [王成伟, 马保宏, 李燕, 陈建彪, 王建, 刘维民 2008 物理学报 57 5800]

    [8]

    Lin J, Liu K, Chen X F 2011 Small 7 1784

    [9]

    Habazaki H, Teraoka M, Aoki Y, Skeldon P, Thompson G E 2010 Electrochim. Acta 55 3939

    [10]

    Lee K, Kim D, Roy P, Paramasivam I, Birajdar B I, Spiecker E, Schmuki P 2010 J. Am. Chem. Soc. 132 1478

    [11]

    Li S Q, Yin J B, Zhang G M 2010 Sci. China. Chem. 53 1068 (in Chinese) [李仕琦, 尹建波, 张耿民 2010 中国科学: 化学 53 1068]

    [12]

    Wang D A, Liu Y, Yu B, Zhou F, Liu W M 2009 Chem. Mater. 21 1198

    [13]

    Jessensky O, Müller F, Gösele U 1998 Appl. Phys. Lett. 72 1173

    [14]

    Li A P, Müller F, Birner A, Nielsch K, Gösele U 1998 J. Appl. Phys. 84 6023

    [15]

    Nielsch K, Choi J, Schwirn K, Wehrspohn R B, Gösele U 2002 Nano Lett. 2 677

    [16]

    Lee W, Schwirn K, Steinhart M, Pippel E, Scholz R, Gösele U 2008 Nat. Nanotechnol. 3 234

    [17]

    Skeldon P, Thompson G E, Garcia-Vergara S J, Iglesias-Rubianes L, Blanco-Pinzon C E 2006 Electrochem. Solid. St. 9 B47

    [18]

    Garcia-Vergara S J, Skeldon P, Thompson G E, Habazaki H 2006 Electrochim. Acta 52 681

    [19]

    Garcia-Vergara S J, Habazaki H, Skeldon P, Thompson G E 2010 Electrochim. Acta 55 3175

    [20]

    Houser J E, Hebert K R 2009 Nat. Mater. 8 415

    [21]

    Houser J E, Hebert K R 2006 J. Electrochem. Soc. 153 B566

    [22]

    Li D D, Zhao L, Jiang C H, Lu J G 2010 Nano Lett. 10 2766

    [23]

    Li D D, Jiang C H, Jiang J H, Lu J G 2009 Chem. Mater. 21 253

    [24]

    Su Z X, Zhou W Z 2008 Adv. Mater. 20 3663

    [25]

    Su Z X, Bühl M, Zhou W Z 2009 J. Am. Chem. Soc. 131 8697

    [26]

    Su Z X, Zhou W Z 2011 J. Mater. Chem. 21 357

    [27]

    Berger S, Hahn R, Roy P, Schmuki P 2010 Phys. Status Solidi B 247 2424

    [28]

    Roy P, Berger S, Schmuki P 2011 Angew. Chem. Int. Ed. 50 2904

    [29]

    Liu H W, Guo H M, Wang Y L, Shen C M, Yang H T, Wang Y T, Wei L 2004 Acta Phys. Sin. 53 656 (in Chinese) [刘虹雯,郭海明,王业亮,申承民,杨海涛,王雨田,魏龙 2004 物理学报 53 656]

    [30]

    Zhu X F, Han H, Song Y, Duan W Q 2012Acta Phys. Chim. Sin. 28 1291 (in Chinese) [朱绪飞, 韩华, 宋晔, 段文强 2012 物理化学学报 28 1291]

    [31]

    Patermarakis G, Moussoutzanis K 2009 Electrochim. Acta 54 2434

    [32]

    Patermarakis G 2009 J. Electroanal. Chem. 635 39

    [33]

    Keller F, Hunter M S, Robinson D L 1953 J. Electrochem. Soc. 100 411

    [34]

    Diggle J W, Downie T C, Goulding C W 1969 Chem. Rev. 69 365

    [35]

    O'Sullivan J P, Wood G C 1970 Proc. R. Soc. Lond. A 317 511

    [36]

    Thompson G E, Furneaux R C, Wood G C, Richardson J A, Goode J S 1978 Nature 272 433

    [37]

    Thompson G E, Wood G C 1981 Nature 290 230

    [38]

    Furneaux R C, Rigby W R, Davidson A P 1989 Nature 337 147

    [39]

    Parkhutik V P, Shershulsky V I 1992 J. Phys. D: Appl. Phys. 25 1258

    [40]

    Thompson G E 1997 Thin Solid Films 297 192

    [41]

    Masuda H, Hasegwa F, Ono S 1997 J. Electrochem. Soc. 144 L127

    [42]

    Poinern G E J, Ali N, Fawcett D 2011 Materials 4 487

    [43]

    Su Z X, Zhou W Z 2011 J. Mater. Chem. 21 8955

    [44]

    Li Y, Shimada H, Sakairi M, Shigyo K, Takahashi H, Seo M 1997 J. Electrochem. Soc. 144 866

    [45]

    Zhu X F, Liu L, Zhao B C 2003 The Chinese Journal of Nonferrous Metals 13 1031 (in Chinese) [朱绪飞, 刘 霖, 赵宝昌 2003 中国有色金属学报 13 1031]

    [46]

    Macak J M, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P 2007 Curr. Opi. Solid. St. M. 11 3

    [47]

    Ghicov A, Schmuki P 2009 Chem. Commun. 45 2791

    [48]

    Li F Y, Zhang L, Metzger R M 1998 Chem. Mater. 10 2470

    [49]

    Albella J M, Montero I, Martinez-Duart J M 1987 Electrochim. Acta 32 255

    [50]

    Zhu X F, Liu L, Song Y, Jia H, Yu H, Xiao X, Yang X 2008 Mater. Lett. 62 4038

    [51]

    Zhu X F, Liu L, Song Y, Jia H, Yu H, Xiao X, Yang X 2008 Monatsh. Chem. 139 999

    [52]

    Crossland A C, Habazaki H, Shimizu K, Skeldon P, Thompson G E, Wood G C, Zhou X, Smith C J 1999 Corros. Sci. 41 1945

    [53]

    Zhou X, Thompson G E, Habazaki H, Paez M A, Shimizu K, Skeldon P, Wood G C 2000 J. Electrochem. Soc. 147 1747

    [54]

    Habazaki H, Konno H, Shimizu K, Nagata S, Skeldon P, Thompson G E 2004 Corros. Sci. 46 2041

    [55]

    Schwirn K, Lee W, Hillebrand R, Steinhart M, Nielsch K, Gösele U 2008 ACS Nano 2 302

    [56]

    Lee W, Scholz R, Gösele U 2008 Nano Lett. 8 2155

    [57]

    Chung C K, Zhou R X, Liu T Y, Chang W T 2009 Nanotechnology 20 055301

    [58]

    Ispas A, Bund A, Vrublevsky I 2010 J. Solid State Electrochem. 14 2121

    [59]

    Li Y, Ling Z Y, Hu X, Liu Y S, Chang Y 2011 J. Mater. Chem. 21 9661

    [60]

    Li Y, Ling Z Y, Hu X, Liu Y S, Chang Y 2011 Chem. Commun. 47 2173

    [61]

    Zhang R, Jiang K M, Zhu Y, Qi H Y, Ding G Q 2011 Appl. Surf. Sci. 258 586

    [62]

    Patermarakis G, Moussoutzanis K 2011 J. Electroanal. Chem. 659 176

  • [1] 慕立鹏, 周姚, 赵建行, 王丽, 蒋礼, 周见红. 基于阳极氧化铝模板增强NaYF4:Yb3+/Er3+上转换发光研究. 物理学报, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [2] 孟祥琛, 王丹, 蔡亚辉, 叶振, 贺永宁, 徐亚男. 氧化铝表面二次电子发射抑制及其在微放电抑制中的应用. 物理学报, 2023, 72(10): 107901. doi: 10.7498/aps.72.20222404
    [3] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究. 物理学报, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [4] 许青林, 项婷, 徐伟, 李婷, 吴小龑, 李巍, 邱学军, 陈平. 金纳米粒子修饰氧化铟锡阳极的高效率红光钙钛矿发光二极管. 物理学报, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [5] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究. 物理学报, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [6] 马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯. 聚丙烯/氧化铝纳米电介质的陷阱与直流击穿特性. 物理学报, 2017, 66(6): 067701. doi: 10.7498/aps.66.067701
    [7] 李国栋, 王倩, 邓保霞, 张雅晶. 多孔氧化铝薄膜的光致发光起源: 三种缺陷中心. 物理学报, 2014, 63(24): 247802. doi: 10.7498/aps.63.247802
    [8] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [9] 王旭龙琦, 张冬仙, 章海军. 基于多孔氧化铝和单原子沉积技术的颜色调控方法研究. 物理学报, 2011, 60(5): 058104. doi: 10.7498/aps.60.058104
    [10] 吴志国, 张鹏举, 徐亮, 李拴魁, 王君, 李旭东, 闫鹏勋. 新型氧化铝模板自组装制备非晶碳纳米点阵列膜及其场发射性能研究. 物理学报, 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [11] 王成伟, 马保宏, 李 燕, 陈建彪, 王 建, 刘维民. 有序TiO2纳米管阵列结构的可控生长及其物相研究. 物理学报, 2008, 57(9): 5800-5805. doi: 10.7498/aps.57.5800
    [12] 马保宏, 李 燕, 王成伟, 王 建, 陈建彪, 刘维民. 多孔TiO2/Al/SiO2纳米复合结构的紫外光吸收特性研究. 物理学报, 2008, 57(1): 586-591. doi: 10.7498/aps.57.586
    [13] 黄丽清, 潘华强, 王 军, 童慧敏, 朱 可, 任冠旭, 王永昌. 多孔氧化铝膜上自组织生长Sn纳米点阵列的研究. 物理学报, 2007, 56(11): 6712-6716. doi: 10.7498/aps.56.6712
    [14] 王 森, 俞国军, 巩金龙, 李勤涛, 朱德彰, 朱志远. 低能氩离子束对多孔铝阳极氧化膜表面的刻蚀效应研究. 物理学报, 2006, 55(3): 1517-1522. doi: 10.7498/aps.55.1517
    [15] 王 森, 俞国军, 巩金龙, 朱德彰, 何绥霞, 朱志远, 徐洪杰. 碳纳米管的氧化铝模板法合成及其退火效应研究. 物理学报, 2005, 54(10): 4949-4954. doi: 10.7498/aps.54.4949
    [16] 王成伟, 王 建, 李 燕, 刘维民, 徐 洮, 孙小伟, 力虎林. 多孔阳极氧化铝薄膜光学常数的确定. 物理学报, 2005, 54(1): 439-444. doi: 10.7498/aps.54.439
    [17] 李 燕, 王成伟, 田 军, 刘维民, 陈 淼, 力虎林. 钴/氧化铝纳米有序阵列复合结构的光学特性研究. 物理学报, 2004, 53(5): 1594-1598. doi: 10.7498/aps.53.1594
    [18] 刘虹雯, 郭海明, 王业亮, 申承民, 杨海涛, 王雨田, 魏 龙. 阳极氧化铝模板表面自组织条纹的形成. 物理学报, 2004, 53(2): 656-660. doi: 10.7498/aps.53.656
    [19] 马春兰. 高质量规则多孔氧化铝模板的制备. 物理学报, 2004, 53(6): 1952-1955. doi: 10.7498/aps.53.1952
    [20] 李 鹏, 马玉蓉, 方容川, 胡克良. 激光辅助阳极化制备多孔硅的蓝光发射与红外研究. 物理学报, 1998, 47(1): 124-130. doi: 10.7498/aps.47.124
计量
  • 文章访问数:  8371
  • PDF下载量:  1151
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-20
  • 修回日期:  2012-09-13
  • 刊出日期:  2012-11-05

/

返回文章
返回