搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同散射机理对 Al2O3/InxGa1-xAs nMOSFET 反型沟道电子迁移率的影响

黄苑 徐静平 汪礼胜 朱述炎

引用本文:
Citation:

不同散射机理对 Al2O3/InxGa1-xAs nMOSFET 反型沟道电子迁移率的影响

黄苑, 徐静平, 汪礼胜, 朱述炎

Effects of different scattering mechanisms on inversion-channel electron mobility in Al2O3/InxGa1-xAs nMOSFET

Huang Yuan, Xu Jing-Ping, Wang Li-Sheng, Zhu Shu-Yan
PDF
导出引用
  • 通过考虑体散射、界面电荷的库仑散射以及 Al2O3/InxGa1-xAs 界面粗糙散射等主要散射机理, 建立了以 Al2O3为栅介质InxGa1-xAs n 沟金属-氧化物-半导体场效应晶体管 (nMOSFETs) 反型沟道电子迁移率模型, 模拟结果与实验数据有好的符合. 利用该模型分析表明, 在低至中等有效电场下, 电子迁移率主要受界面电荷库仑散射的影响; 而在强场下, 电子迁移率则取决于界面粗糙度散射. 降低界面态密度, 减小 Al2O3/InxGa1-xAs 界面粗糙度, 适当提高In含量并控制沟道掺杂在合适值是提高 InGaAs nMOSFETs 反型沟道电子迁移率的主要途径.
    An inversion-channel electron mobility model for InxGa1-xAs n-channel metal-oxide-semiconductor field-effect transistors (nMOSFETs) with Al2O3 as gate dielectric is established by considering main scattering mechanisms of bulk scattering, Coulomb scattering of interface charges and interface- roughness scattering of the Al2O3/InxGa1-xAs interface. The simulated results are in good agreement with the experimental data. Analyses by using the model indicate that the total electron mobility is mainly limited by the Coulomb scattering of interface charges under weak and medium effective fields and by the interface-roughness scattering under strong effective fields. Therefore, the effective approaches of enhancing the inversion-channel electron mobility are to reduce the interface-state density and roughness of the Al2O3/InxGa1-xAs interface, to properly increase the in content and control the doping concentration of the InxGa1-xAs channel to a suitable value.
    • 基金项目: 国家自然科学基金 (批准号: 61176100)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61176100).
    [1]

    Zhang Z F, Zhang H M, Hu H Y, Xuan R Y, Song J J 2009 Acta Phys. Sin. 58 4948 (in Chinese) [张志锋, 张鹤鸣, 胡辉勇, 宣荣喜, 宋建军 2009 物理学报 58 4948]

    [2]

    Zou X 2007 Ph.D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [邹晓 2007 博士学位论文 (武汉: 华中科技大学)]

    [3]

    Khairurrijal, Mizubayashi W, Miyazaki S, Hirose M 2000 J. Appl. Phys. 87 3000

    [4]

    Larcher L, Paccagnella A, Ghidini G 2001 IEEE Transactions on Electron Device 48 271

    [5]

    Hansen K, Brandbyge M 2004 J. Appl. Phys. 95 3582

    [6]

    Zhang X F, Qiu Y Z, Zhang Z J, Chen Y, Huang J, Wang Z L, Xu J P 2010 Research & Progress of Solid State Electronics 30 180 (in Chinese) [张雪峰, 邱云珍, 张振娟, 陈云, 黄静, 王志亮, 徐静平 2010 固体电子学研究与进展 30 180]

    [7]

    Hill R J W, Droopad R, Moran D A J, Li X, Zhou H, Macint Y D, Thoms S, Ignatova O, Asenov A, Rajagopalan K, Fejes P, Thayne I G, Passlack M 2008 Electronics Letters 44 498

    [8]

    Xuan Y, Wu Y Q, Lin H C, Shen T, Ye P D 2007 IEEE Electron Device Letters 28 935

    [9]

    Rim K, Koester S, Hargrove M, Chu J, Mooney P M, Ott J, Kanarsky T, Ronsheim P, Ieong M, Grill A, Wong H S P 2001 Tech. Dig. VLSI Symp. 4-89114-012-7 59

    [10]

    Lee C H, Nishimura T, Saido N, Nagashio K, Kita K, Toriumi A 2009 Tech. Dig. in. Electron Devices Meet Baltimore, MD, USA, Dec. 7-9 2009 p1(Piscataway, NJ, USA: IEEE)

    [11]

    O’Regan T P, Fischetti M V, Sorée B, Jin S, Magnus W, Meuris M 2010 Journal of Applied Physics 108 103705

    [12]

    Wang W K, Hwang J C M, Xuan Y, Ye P D 2011 IEEE Transactions on Electro Devices 58 1972

    [13]

    Sotoodeh M, Khalid A H, Rezazadeh A A 2000 J. Appl. Phys. 87 2890

    [14]

    Zou X, Xu J P, Chen W B, Wu H P 2005 Micro Electronics 35 465 (in Chinese) [邹晓, 徐静平, 陈卫兵, 吴海平 2005 微电子学 35 465]

    [15]

    Li B, Liu H X, Yuan B, Li J, Lu F M 2011 Acta Phys. Sin. 60 017202-1 (in Chinese) [李斌, 刘红侠, 袁博, 李劲, 卢凤铭 2011 物理学报 60 017202-1]

    [16]

    Stephen K P, Neil G, James M M, Bernstein J, Scozzie C J, Lelis A 2002 J. Appl. Phys. 92 4053

    [17]

    Zhang X F, Xu J P, Zou X, Zhang L J 2006 Chinese Journal of Semiconductors 27 2000 (in Chinese) [张雪峰, 徐静平, 邹晓, 张兰君 2006 半导体学报 27 2000]

  • [1]

    Zhang Z F, Zhang H M, Hu H Y, Xuan R Y, Song J J 2009 Acta Phys. Sin. 58 4948 (in Chinese) [张志锋, 张鹤鸣, 胡辉勇, 宣荣喜, 宋建军 2009 物理学报 58 4948]

    [2]

    Zou X 2007 Ph.D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [邹晓 2007 博士学位论文 (武汉: 华中科技大学)]

    [3]

    Khairurrijal, Mizubayashi W, Miyazaki S, Hirose M 2000 J. Appl. Phys. 87 3000

    [4]

    Larcher L, Paccagnella A, Ghidini G 2001 IEEE Transactions on Electron Device 48 271

    [5]

    Hansen K, Brandbyge M 2004 J. Appl. Phys. 95 3582

    [6]

    Zhang X F, Qiu Y Z, Zhang Z J, Chen Y, Huang J, Wang Z L, Xu J P 2010 Research & Progress of Solid State Electronics 30 180 (in Chinese) [张雪峰, 邱云珍, 张振娟, 陈云, 黄静, 王志亮, 徐静平 2010 固体电子学研究与进展 30 180]

    [7]

    Hill R J W, Droopad R, Moran D A J, Li X, Zhou H, Macint Y D, Thoms S, Ignatova O, Asenov A, Rajagopalan K, Fejes P, Thayne I G, Passlack M 2008 Electronics Letters 44 498

    [8]

    Xuan Y, Wu Y Q, Lin H C, Shen T, Ye P D 2007 IEEE Electron Device Letters 28 935

    [9]

    Rim K, Koester S, Hargrove M, Chu J, Mooney P M, Ott J, Kanarsky T, Ronsheim P, Ieong M, Grill A, Wong H S P 2001 Tech. Dig. VLSI Symp. 4-89114-012-7 59

    [10]

    Lee C H, Nishimura T, Saido N, Nagashio K, Kita K, Toriumi A 2009 Tech. Dig. in. Electron Devices Meet Baltimore, MD, USA, Dec. 7-9 2009 p1(Piscataway, NJ, USA: IEEE)

    [11]

    O’Regan T P, Fischetti M V, Sorée B, Jin S, Magnus W, Meuris M 2010 Journal of Applied Physics 108 103705

    [12]

    Wang W K, Hwang J C M, Xuan Y, Ye P D 2011 IEEE Transactions on Electro Devices 58 1972

    [13]

    Sotoodeh M, Khalid A H, Rezazadeh A A 2000 J. Appl. Phys. 87 2890

    [14]

    Zou X, Xu J P, Chen W B, Wu H P 2005 Micro Electronics 35 465 (in Chinese) [邹晓, 徐静平, 陈卫兵, 吴海平 2005 微电子学 35 465]

    [15]

    Li B, Liu H X, Yuan B, Li J, Lu F M 2011 Acta Phys. Sin. 60 017202-1 (in Chinese) [李斌, 刘红侠, 袁博, 李劲, 卢凤铭 2011 物理学报 60 017202-1]

    [16]

    Stephen K P, Neil G, James M M, Bernstein J, Scozzie C J, Lelis A 2002 J. Appl. Phys. 92 4053

    [17]

    Zhang X F, Xu J P, Zou X, Zhang L J 2006 Chinese Journal of Semiconductors 27 2000 (in Chinese) [张雪峰, 徐静平, 邹晓, 张兰君 2006 半导体学报 27 2000]

  • [1] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [2] 韩名君, 柯导明, 迟晓丽, 王敏, 王保童. 超短沟道MOSFET电势的二维半解析模型. 物理学报, 2013, 62(9): 098502. doi: 10.7498/aps.62.098502
    [3] 魏来明, 周远明, 俞国林, 高矿红, 刘新智, 林铁, 郭少令, 戴宁, 褚君浩, Austing David Guy. 高迁移率InGaAs/InP量子阱中的有效g因子. 物理学报, 2012, 61(12): 127102. doi: 10.7498/aps.61.127102
    [4] 常虎东, 孙兵, 卢力, 赵威, 王盛凯, 王文新, 刘洪刚. 高迁移率In0.6Ga0.4As沟道MOSHEMT与MOSFET器件特性的研究. 物理学报, 2012, 61(21): 217304. doi: 10.7498/aps.61.217304
    [5] 毛维, 杨翠, 郝跃, 张进成, 刘红侠, 马晓华, 王冲, 张金风, 杨林安, 许晟瑞, 毕志伟, 周洲, 杨凌, 王昊. 场板抑制GaN高电子迁移率晶体管电流崩塌的机理研究. 物理学报, 2011, 60(1): 017205. doi: 10.7498/aps.60.017205
    [6] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌. 0.18 m MOSFET器件的总剂量辐照效应. 物理学报, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [7] 林若兵, 王欣娟, 冯 倩, 王 冲, 张进城, 郝 跃. AlGaN/GaN高电子迁移率晶体管肖特基高温退火机理研究. 物理学报, 2008, 57(7): 4487-4491. doi: 10.7498/aps.57.4487
    [8] 周文政, 林 铁, 商丽燕, 黄志明, 崔利杰, 李东临, 高宏玲, 曾一平, 郭少令, 桂永胜, 褚君浩. InAlAs/InGaAs/InAlAs量子阱高迁移率二维电子气系统中的反弱局域效应研究. 物理学报, 2007, 56(7): 4099-4104. doi: 10.7498/aps.56.4099
    [9] 鄢永高, 唐新峰, 刘海君, 尹玲玲, 张清杰. Ag偏离化学计量比Ag1-xPb18SbTe20材料的热电传输性能. 物理学报, 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [10] 杨晓杰, 王 青, 马文全, 陈良惠. InGaAs/GaAs量子点阵列中的能级计算. 物理学报, 2007, 56(9): 5429-5435. doi: 10.7498/aps.56.5429
    [11] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型. 物理学报, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [12] 陈卫兵, 徐静平, 邹 晓, 李艳萍, 许胜国, 胡致富. 小尺寸MOSFET隧穿电流解析模型. 物理学报, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
    [13] 包军林, 庄奕琪, 杜 磊, 李伟华, 万长兴, 张 萍. N/P沟道MOSFET1/f噪声的统一模型. 物理学报, 2005, 54(5): 2118-2122. doi: 10.7498/aps.54.2118
    [14] 汤晓燕, 张义门, 张玉明, 郜锦侠. 界面态电荷对n沟6H-SiC MOSFET场效应迁移率的影响. 物理学报, 2003, 52(4): 830-833. doi: 10.7498/aps.52.830
    [15] 王 源, 张义门, 张玉明, 汤晓燕. 6H-SiC肖特基源漏MOSFET的模拟仿真研究. 物理学报, 2003, 52(10): 2553-2557. doi: 10.7498/aps.52.2553
    [16] 徐昌发, 杨银堂, 刘莉. 4H-SiC MOSFET的温度特性研究. 物理学报, 2002, 51(5): 1113-1117. doi: 10.7498/aps.51.1113
    [17] 尚也淳, 张义门, 张玉明. SiC/SiO2界面粗糙散射对沟道迁移率影响的Monte Carlo研究. 物理学报, 2001, 50(7): 1350-1354. doi: 10.7498/aps.50.1350
    [18] 尚也淳, 张义门, 张玉明. 6H-SiC电子输运的Monte Carlo模拟. 物理学报, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
    [19] 沈文忠, 唐文国, 沈学础, A.Dimonlas. δ掺杂的赝形高电子迁移率晶体管AIGaAs/InGaAs/GaAs结构中的费密边奇异性研究. 物理学报, 1995, 44(5): 825-831. doi: 10.7498/aps.44.825
    [20] 沈文忠, 唐文国, 沈学础, A.Dimoulas. δ掺杂的赝形高电子迁移率晶体管AlGaAs/InGaAs/GaAs结构的光谱研究. 物理学报, 1995, 44(5): 779-787. doi: 10.7498/aps.44.779
计量
  • 文章访问数:  6216
  • PDF下载量:  851
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-18
  • 修回日期:  2013-04-09
  • 刊出日期:  2013-08-05

/

返回文章
返回