搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基光栅耦合器的研究进展

杨彪 李智勇 肖希 Nemkova Anastasia 余金中 俞育德

引用本文:
Citation:

硅基光栅耦合器的研究进展

杨彪, 李智勇, 肖希, Nemkova Anastasia, 余金中, 俞育德

The progress of silicon-based grating couplers

Yang Biao, Li Zhi-Yong, Xiao Xi, Nemkova Anastasia, Yu Jin-Zhong, Yu Yu-De
PDF
导出引用
  • 硅基光子集成芯片的研究近年来发展迅速, 已成为信息技术领域中最热门的研究方向之一, 光通信、光互连、光传感等相关研发应用机构高度关注其发展, 并积极介入. 硅基光子集成芯片中, 光栅耦合器作为光信号的输入和输出装置受到极大重视, 尤其在封装和测试等环节体现出极具价值的技术优势. 本文主要分析了光栅耦合器的工作原理、基本特性及国内外的发展现状和趋势, 同时也概括了本课题组近期在该方向上的研究成果.
    Silicon-based photonic integrated chips recently have attracted great attention and actively intervened in many applications such as optical communications, optical interconnects, and optical sensing for relevant research institutions. Photonic integrated circuits are the key block to build information infrastructures. Among of them, grating couplers play an important role in silicon photonics, due to high efficient optical coupling on/off photonic chips. Also, they have many advantages in high density photonic packaging and on-wafer testing, such as large alignment tolerances and no requirements for wafer scribing or chip polishing. This review focuses on the principles and performances of grating couplers on silicon-on-insulator substrates. In this article, we also discuss the state-of-art and the trends in the near future, with a summary of our achievements over the last few years.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CB301701);中国科学院知识创新工程重要方向项目(批准号:KGCX2-EW-102)和国家自然科学基金(批准号:61107048,61275065)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB301701), the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No. KGCX2-EW-102), and the National Natural Science Foundation of China (Grant Nos. 61107048, 61275065).
    [1]

    Kobrinsky M J, Block B A, Zheng J F, Barnett B C, Mohanmed E, Reshotko M, Robertson F, List S, Young I, Cadien K 2004 Intel Technol. J. 8 129

    [2]

    O’Connor I, Gaffiot F 2004 Ultra Low-Power Electronics and Design (New York: Springer) pp21-29

    [3]

    Jalali B, Fathpour S 2006 J. Lightwave Technol. 24 4600

    [4]

    Soref R 2006 IEEE J. Sel. Top. Quant. 12 1678

    [5]

    Miller D A 1997 Int. J. Optoelectron. 11 155

    [6]

    Bolten J, Hofrichter J, Moll N, Schöenberger S, Horst F, Offrein B J, Wahlbrink T, Mollenhauer T, Kurz H 2009 Microelectron. Eng. 86 1114

    [7]

    Chen X, Li C, Tsang H K 2008 IEEE Photon. Technol. Lett. 20 1914

    [8]

    van Laere F, Roelkens G, Ayre M, Schrauwen J, Taillaert D, van Thourhout D, Krauss T F, Baets R 2007 J. Lightwave Technol. 25 151

    [9]

    Selvaraja S K, Vermeulen D, Schaekers M, Sleeckx E, Bogaerts W, Roelkens G, Dumon P, van Thourhout D, Baets R 2009 Lasers and Electro-Optics/International Quantum Electronics Conference Munich, June 2-4. 2009 p1

    [10]

    Roelkens G, Vermeulen D, van Laere F, Selvaraja S, Scheerlinck S, Taillaert D, Bogaerts W, Dumon P, van Thourhout D, Baets R 2010 J. Nanosci. Nanotechnol. 10 1551

    [11]

    Anastasia N, Xiao X, Yang B, Chu T, Yu J Z, Yu Y D 2012 Chin. Phys. Lett. 19 114213

    [12]

    Zhou L, Li Z Y, Zhu Y, Li Y T, Fan Z C, Han W H, Yu Y D, Yu J 2010 Chin. Phys. B 19 124214

    [13]

    Taillaert D, Bienstman P, Baets R 2004 Opt. Lett. 29 2749

    [14]

    Tang Y, Wang Z, Wosinski L, Westergren U, He S 2010 Opt. Lett. 35 1290

    [15]

    Zhang C, Sun J H, Xiao X, Sun W M, Zhang X J, Chu T, Yu J Z, Yu Y D 2013 Chin. Phys. Lett. 30 014207

    [16]

    Li C, Zhang H J, Yu M B, Lo G 2013 Optical Fiber Communication Conference Anaheim, March 17, 2013

    [17]

    Ura S, Murata S, Awatsuji Y, Kintaka K 2008 Opt. Express 16 12207

    [18]

    Van Laere F, Kotlyar M V, Taillaert D, van Thourhout D, Krauss T F, Baets R 2007 IEEE Photon. Technol. Lett. 19 396

    [19]

    Zhou L, Li Z Y, Hu Y T, Xiong K, Fan Z C, Han W H, Yu Y D, Yu J Z 2011 Chin. Phys. B 20 074212

    [20]

    Yang J B, Zhou Z P, Jia H H, Zhang X A, Qin S Q 2011 Opt. Lett. 36 2614

    [21]

    Mekis A, Gloeckner S, Masini G, Narasimha A, Pinguet T, Sahni S, De Dobbelaere P 2011 IEEE J. Sel. Top. Quant. 17 597

    [22]

    Cheng Z, Chen X, Wong C, Xu K, Fung C K, Chen Y, Tsang H K 2012 Opt. Lett. 37 1217

    [23]

    Cheng Z, Chen X, Wong C Y, Xu K, Ki T H 2012 Opt. Lett. 37 5181

    [24]

    Zhu Y, Xu X J, Li Z Y, Zhou L, Han W H, Fan Z C, Yu Y D, Yu J Z 2010 Chin. Phys. B 19 5

  • [1]

    Kobrinsky M J, Block B A, Zheng J F, Barnett B C, Mohanmed E, Reshotko M, Robertson F, List S, Young I, Cadien K 2004 Intel Technol. J. 8 129

    [2]

    O’Connor I, Gaffiot F 2004 Ultra Low-Power Electronics and Design (New York: Springer) pp21-29

    [3]

    Jalali B, Fathpour S 2006 J. Lightwave Technol. 24 4600

    [4]

    Soref R 2006 IEEE J. Sel. Top. Quant. 12 1678

    [5]

    Miller D A 1997 Int. J. Optoelectron. 11 155

    [6]

    Bolten J, Hofrichter J, Moll N, Schöenberger S, Horst F, Offrein B J, Wahlbrink T, Mollenhauer T, Kurz H 2009 Microelectron. Eng. 86 1114

    [7]

    Chen X, Li C, Tsang H K 2008 IEEE Photon. Technol. Lett. 20 1914

    [8]

    van Laere F, Roelkens G, Ayre M, Schrauwen J, Taillaert D, van Thourhout D, Krauss T F, Baets R 2007 J. Lightwave Technol. 25 151

    [9]

    Selvaraja S K, Vermeulen D, Schaekers M, Sleeckx E, Bogaerts W, Roelkens G, Dumon P, van Thourhout D, Baets R 2009 Lasers and Electro-Optics/International Quantum Electronics Conference Munich, June 2-4. 2009 p1

    [10]

    Roelkens G, Vermeulen D, van Laere F, Selvaraja S, Scheerlinck S, Taillaert D, Bogaerts W, Dumon P, van Thourhout D, Baets R 2010 J. Nanosci. Nanotechnol. 10 1551

    [11]

    Anastasia N, Xiao X, Yang B, Chu T, Yu J Z, Yu Y D 2012 Chin. Phys. Lett. 19 114213

    [12]

    Zhou L, Li Z Y, Zhu Y, Li Y T, Fan Z C, Han W H, Yu Y D, Yu J 2010 Chin. Phys. B 19 124214

    [13]

    Taillaert D, Bienstman P, Baets R 2004 Opt. Lett. 29 2749

    [14]

    Tang Y, Wang Z, Wosinski L, Westergren U, He S 2010 Opt. Lett. 35 1290

    [15]

    Zhang C, Sun J H, Xiao X, Sun W M, Zhang X J, Chu T, Yu J Z, Yu Y D 2013 Chin. Phys. Lett. 30 014207

    [16]

    Li C, Zhang H J, Yu M B, Lo G 2013 Optical Fiber Communication Conference Anaheim, March 17, 2013

    [17]

    Ura S, Murata S, Awatsuji Y, Kintaka K 2008 Opt. Express 16 12207

    [18]

    Van Laere F, Kotlyar M V, Taillaert D, van Thourhout D, Krauss T F, Baets R 2007 IEEE Photon. Technol. Lett. 19 396

    [19]

    Zhou L, Li Z Y, Hu Y T, Xiong K, Fan Z C, Han W H, Yu Y D, Yu J Z 2011 Chin. Phys. B 20 074212

    [20]

    Yang J B, Zhou Z P, Jia H H, Zhang X A, Qin S Q 2011 Opt. Lett. 36 2614

    [21]

    Mekis A, Gloeckner S, Masini G, Narasimha A, Pinguet T, Sahni S, De Dobbelaere P 2011 IEEE J. Sel. Top. Quant. 17 597

    [22]

    Cheng Z, Chen X, Wong C, Xu K, Fung C K, Chen Y, Tsang H K 2012 Opt. Lett. 37 1217

    [23]

    Cheng Z, Chen X, Wong C Y, Xu K, Ki T H 2012 Opt. Lett. 37 5181

    [24]

    Zhu Y, Xu X J, Li Z Y, Zhou L, Han W H, Fan Z C, Yu Y D, Yu J Z 2010 Chin. Phys. B 19 5

  • [1] 戴玉, 张文喜, 孔新新, 沈杨翊, 徐豪, 张晓强. 基于低频外差干涉的光纤环形器重合度检测研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231941
    [2] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展. 物理学报, 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [3] 陆梦佳, 恽斌峰. 基于硅基砖砌型亚波长光栅的紧凑型模式转换器. 物理学报, 2023, 72(16): 164203. doi: 10.7498/aps.72.20230673
    [4] 张书豪, 袁章亦安, 乔明, 张波. 超薄屏蔽层300 V SOI LDMOS抗电离辐射总剂量仿真研究. 物理学报, 2022, 71(10): 107301. doi: 10.7498/aps.71.20220041
    [5] 鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配. 基于硅基光子器件的Fano共振研究进展. 物理学报, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [6] 涂鑫, 陈震旻, 付红岩. 硅基光波导开关技术综述. 物理学报, 2019, 68(10): 104210. doi: 10.7498/aps.68.20190011
    [7] 王硕, 常永伟, 陈静, 王本艳, 何伟伟, 葛浩. 新型绝缘体上硅静态随机存储器单元总剂量效应. 物理学报, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [8] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [9] 肖廷辉, 于洋, 李志远. 石墨烯-硅基混合光子集成电路. 物理学报, 2017, 66(21): 217802. doi: 10.7498/aps.66.217802
    [10] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究. 物理学报, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [11] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [12] 秦晨, 余辉, 叶乔波, 卫欢, 江晓清. 基于绝缘体上硅的一种改进的Mach-Zehnder声光调制器. 物理学报, 2016, 65(1): 014304. doi: 10.7498/aps.65.014304
    [13] 林建潇, 吴九汇, 刘爱群, 陈喆, 雷浩. 光梯度力驱动的纳米硅基光开关. 物理学报, 2015, 64(15): 154209. doi: 10.7498/aps.64.154209
    [14] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [15] 焦新泉, 陈家斌, 王晓丽, 薛晨阳, 任勇峰. 基于新型三环谐振器的诱导透明效应分析. 物理学报, 2015, 64(14): 144202. doi: 10.7498/aps.64.144202
    [16] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构. 物理学报, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [17] 周培基, 李智勇, 俞育德, 余金中. 硅基光子集成研究进展. 物理学报, 2014, 63(10): 104218. doi: 10.7498/aps.63.104218
    [18] 舒 斌, 张鹤鸣, 朱国良, 樊 敏, 宣荣喜. 基于智能剥离技术的SOI材料制备. 物理学报, 2007, 56(3): 1668-1673. doi: 10.7498/aps.56.1668
    [19] 杨 华, 朱洪亮, 潘教青, 冯 文, 谢红云, 周 帆, 安 欣, 边 静, 赵玲娟, 陈娓兮, 王 圩. 采用单边大光腔结构改善电吸收调制器的光场分布. 物理学报, 2007, 56(5): 2751-2755. doi: 10.7498/aps.56.2751
    [20] 徐德维. 薄膜光栅耦合器的研究. 物理学报, 1980, 29(9): 1135-1141. doi: 10.7498/aps.29.1135
计量
  • 文章访问数:  8871
  • PDF下载量:  3338
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-15
  • 修回日期:  2013-05-07
  • 刊出日期:  2013-09-05

/

返回文章
返回