-
基于同一混沌信号光注入下两个1550 nm垂直腔面发射激光器 (VCSELs) 中两对应线性偏振模式之间的混沌同步, 提出了一种可实现信息的长距离双向双信道光纤混沌保密通信的系统模型, 并对该系统的同步、双向双信道通信以及光纤信道对信息传输的影响等性能进行了相关仿真研究. 结果表明: 在由驱动混沌激光器所产生的同一混沌光注入下, 两响应激光器中对应的两线偏振模式之间均可实现高质量的等时混沌同步, 且驱动激光器与两响应激光器间的同步系数较低; 基于两响应激光器之间对应线偏振模式的高质量混沌同步, 可实现双向双信道混沌通信; 采用单模保偏光纤 (或色散位移保偏光纤) 作为通信信道, 2.5 Gbit/s信息在传输60 km (或200 km) 后解调信息的Q因子能保持在6以上.
-
关键词:
- 垂直腔面发射激光器 (VCSELs) /
- 双向双信道 /
- 混沌通信 /
- 光纤
Based on the chaos synchronization between two pairs of corresponding linear polarization modes in two 1550 nm vertical-cavity surface-emitting lasers (1550 nm-VCSELs) subject to optical injection of common chaotic signals, a novel bidirectional and dual-channel long-distance chaos secure communication system is proposed. The chaotic synchronization characteristics, bidirectional dual-channel communication performance, and the influences of the fiber channel on the message transmission are numerically investigated. Results show that, driven by a common chaotic signal generated from a driver VCSEL (D-VCSEL), two pairs of responding linear polarization modes in two response 1550nm-VCSELs (R-VCSELs) can be synchronized completely and isochronally. Meanwhile, the synchronization coefficients between the two pairs of responding linear polarization modes in D-VCSEL and R-VCSELs are low. Based on the high quality chaos synchronization between two pairs of responding linear modes in two R-VCSELs, bidirectional and dual-channel chaos secure communication can be achieved. After adopting a single mode polarization-maintaining fiber (or dispersion-shifted polarization-maintaining fiber), for 2.5 Gbit/s messages, the Q factor of the decryption signals after transmitting 60 km (or 200 km) can be more than 6.-
Keywords:
- vertical-cavity surface emitting lasers (VCSELs) /
- bidirectional dual-channel /
- chaos communication /
- optical fiber
[1] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Roy R, Thornburg K S 1994 Phys. Rev. Lett. 72 2009
[3] Mirasso R C, Colet P, Garcia-Fernandez P 1996 IEEE Photon. Technol. Lett. 8 299
[4] Wang Y C, Li Y L, Wang A B, Wang B J, Zhang G W, Guo P 2007 Acta Phys. Sin. 56 4686 (in Chinese) [王云才, 李艳丽, 王安邦, 张耕玮, 郭萍 2007 物理学报 56 4686]
[5] Yan S L 2008 Acta Phys. Sin. 57 2819 (in Chinese) [颜森林 2008 物理学报 61 2819]
[6] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[7] Zhang J Z, Wang A B, Wang J F, Wang Y C 2009 Opt. Express 17 6357
[8] Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 物理学报 58 3793]
[9] Liu H J, Feng J C 2009 Acta Phy. Sin. 58 1484 (in Chinese) [刘慧杰, 冯久超 2009 物理学报 58 1484]
[10] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619
[11] Zhao Q, Yin H, Chen X, 2012 Appl. Opt. 51 5585
[12] Hu H P, Yu Z L, Liu L F 2012 Acta Phy. Sin. 61 190504 (in Chinese) [胡汉平, 于志良, 刘凌锋 2012 物理学报 61 190504]
[13] Klein E, Gross N, Kopelowitz E, Rosenbluh M, Khaykovich L, Kinzel W, Kanter I 2006 Phys. Rev. E 74 046201
[14] Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237
[15] Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243
[16] Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express. 19 8762
[17] Yamamoto T, Oowada I, Yip H, Uchida A, Yoshimori S, Yoshimura K, Muramatsu J, Goto S, Davis P 2007 Opt. Express 15 3974
[18] Annovazzi-Lodi V, Aromataris G, Benedetti M, Hamacher M, Merlo S, Vercesi V 2010 IEEE J. Quantum Electron. 42 143
[19] Wu J G, Wu Z M, Xia G Q, Deng T, Lin X D, Tang X, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 1854
[20] Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587
[21] Li P, Wu J G, Wu Z M, Lin X D, Deng D, Liu Y R, Xia G Q 2011 Opt. Express 19 2392
[22] Xiao Y, Deng T, Wu Z M, Wu J G, Lin X D, Tang X, Zeng L B, Xia G Q 2012 Opt. Commun. 285 1442
[23] Jiang N, Pan W, Luo B, Xiang S Y, Yang L, 2012 IEEE Photon. Technol. Lett. 24 1094
[24] Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[25] Agrawal G P 2001 Nonlinear Fiber Optics (3rd Edn) (California: Academic Press) p49
[26] Bergano N S, Kerfoot F W, Davidson C R 1993 IEEE Photon. Technol. Lett. 5 304
[27] Bogris A, Kanakidis D, Argyris A, Syvridis D 2004 IEEE J. Quantum Electron. 40 1326
[28] Zheng A J, Wu Z M, Deng T, Li X J, Xia G Q 2012 Acta Phys. Sin. 61 234203 (in Chinese) [郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼 2012 物理学报 61 234203]
[29] Nguimdo R M, Lavrov R, Colet P, Jacquot M, Chembo Y K, Larger L 2010 J. Lightw. Technol. 28 2688
[30] Wu J G, Wu Z M, Liu Y R, Fan L, Tang X, Xia G Q 2013 J. Lightw. Technol. 31 461
-
[1] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Roy R, Thornburg K S 1994 Phys. Rev. Lett. 72 2009
[3] Mirasso R C, Colet P, Garcia-Fernandez P 1996 IEEE Photon. Technol. Lett. 8 299
[4] Wang Y C, Li Y L, Wang A B, Wang B J, Zhang G W, Guo P 2007 Acta Phys. Sin. 56 4686 (in Chinese) [王云才, 李艳丽, 王安邦, 张耕玮, 郭萍 2007 物理学报 56 4686]
[5] Yan S L 2008 Acta Phys. Sin. 57 2819 (in Chinese) [颜森林 2008 物理学报 61 2819]
[6] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343
[7] Zhang J Z, Wang A B, Wang J F, Wang Y C 2009 Opt. Express 17 6357
[8] Zhang J Z, Wang A B, Wang Y C 2009 Acta Phys. Sin. 58 3793 (in Chinese) [张建忠, 王安帮, 王云才 2009 物理学报 58 3793]
[9] Liu H J, Feng J C 2009 Acta Phy. Sin. 58 1484 (in Chinese) [刘慧杰, 冯久超 2009 物理学报 58 1484]
[10] Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619
[11] Zhao Q, Yin H, Chen X, 2012 Appl. Opt. 51 5585
[12] Hu H P, Yu Z L, Liu L F 2012 Acta Phy. Sin. 61 190504 (in Chinese) [胡汉平, 于志良, 刘凌锋 2012 物理学报 61 190504]
[13] Klein E, Gross N, Kopelowitz E, Rosenbluh M, Khaykovich L, Kinzel W, Kanter I 2006 Phys. Rev. E 74 046201
[14] Zhang W L, Pan W, Luo B, Zou X H, Wang M Y, Zhou Z 2008 Opt. Lett. 33 237
[15] Deng T, Xia G Q, Cao L P, Chen J G, Lin X D, Wu Z M 2009 Opt. Commun. 282 2243
[16] Deng T, Xia G Q, Wu Z M, Lin X D, Wu J G 2011 Opt. Express. 19 8762
[17] Yamamoto T, Oowada I, Yip H, Uchida A, Yoshimori S, Yoshimura K, Muramatsu J, Goto S, Davis P 2007 Opt. Express 15 3974
[18] Annovazzi-Lodi V, Aromataris G, Benedetti M, Hamacher M, Merlo S, Vercesi V 2010 IEEE J. Quantum Electron. 42 143
[19] Wu J G, Wu Z M, Xia G Q, Deng T, Lin X D, Tang X, Feng G Y 2011 IEEE Photon. Technol. Lett. 23 1854
[20] Wu J G, Wu Z M, Tang X, Fan L, Deng W, Xia G Q 2013 IEEE Photon. Technol. Lett. 25 587
[21] Li P, Wu J G, Wu Z M, Lin X D, Deng D, Liu Y R, Xia G Q 2011 Opt. Express 19 2392
[22] Xiao Y, Deng T, Wu Z M, Wu J G, Lin X D, Tang X, Zeng L B, Xia G Q 2012 Opt. Commun. 285 1442
[23] Jiang N, Pan W, Luo B, Xiang S Y, Yang L, 2012 IEEE Photon. Technol. Lett. 24 1094
[24] Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765
[25] Agrawal G P 2001 Nonlinear Fiber Optics (3rd Edn) (California: Academic Press) p49
[26] Bergano N S, Kerfoot F W, Davidson C R 1993 IEEE Photon. Technol. Lett. 5 304
[27] Bogris A, Kanakidis D, Argyris A, Syvridis D 2004 IEEE J. Quantum Electron. 40 1326
[28] Zheng A J, Wu Z M, Deng T, Li X J, Xia G Q 2012 Acta Phys. Sin. 61 234203 (in Chinese) [郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼 2012 物理学报 61 234203]
[29] Nguimdo R M, Lavrov R, Colet P, Jacquot M, Chembo Y K, Larger L 2010 J. Lightw. Technol. 28 2688
[30] Wu J G, Wu Z M, Liu Y R, Fan L, Tang X, Xia G Q 2013 J. Lightw. Technol. 31 461
计量
- 文章访问数: 6009
- PDF下载量: 462
- 被引次数: 0