-
基于密度泛函理论框架下的第一性原理平面波超软赝势方法,构建了未掺杂与相同重氧空位金红石型和锐钛矿型TiO1.9375超胞模型,分别对模型进行了几何结构优化、能带结构分布和态密度分布的计算. 结果表明,氧空位后金红石型和锐钛矿型TiO2体系体积均变大,同时,锐钛矿型TiO1.9375超胞的稳定性、迁移率以及电导率均高于金红石型TiO1.9375超胞. 计算结果和实验结果相一致.
-
关键词:
- 重氧空位 /
- 金红石型和锐钛矿型TiO2 /
- 导电性能 /
- 第一性原理
The pure and heavy oxygen vacancy for both rutile and anatase supercell models of TiO1.9375 were structured by using first-principles plane-wave ultrasoft pseudopotential method based on the density functional theory, the geometry optimizations, band structures, and density of states of these models were calculated. Results show that the volumes become greater for both heavy oxygen vacancy rutile and anatase, meanwhile, all of the stability, mobility, and conductivity of anatase supercell model of TiO1.9375 ore greater than the rutile supercell model, which are in agreement with the experimental results.-
Keywords:
- heavy oxygen vacancy /
- rutile and anatase TiO2 /
- conductivity /
- first-principles
[1] Fujishima A, Honda K 1972 Nature 37 238
[2] Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6593 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6593]
[3] Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]
[4] Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669
[5] Mao L Q, Li Q L, Zhang Z J 2007 Solar Energy 81 1280
[6] Su W T, Song K X, Huo D X, Li B 2013 Curr. Appl. Phys. 13 556
[7] Tian H Y, Zhao G H, Zhang Y N, Wang Y B, Cao T C 2013 Electrochim Acta 96 199
[8] Song K N, Han X P, Shao G S 2013 J. Alloys Compd 551 118
[9] Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 1862 (in Chinese) [侯清玉, 张跃, 张涛 2008 物理学报 57 1862]
[10] Li C, Hou Q Y, Zhang Z D, Zhao C W 2012 Acta Phys. Sin. 61 167103 (in Chinese) [李聪, 侯清玉, 张振铎, 赵春旺 2012 物理学报61 167103]
[11] Lin Y M Jiang Z Y, Hu X Y, Zhang X D, Fan J, Miao H, Shang Y B 2012 Chin. Phys. B 21 033103
[12] Ni L H, Liu Y, Ren Z H, Song C L, Han G R 2011 Chin. Phys. B 20 106102
[13] Liu H, Ma H T, Li X Z, Li W Z, Wu M, Bao X H 2003 Chemosphere 50 39
[14] Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuch K 2000 J. Mol. Catal. A 161 205
[15] Justicia I, Ordejón P, Canto G, Mozos J L, Fraxedas J, Battiston G A, Gerbasi R, Figueras A 2002 Adv. Mater 14 1399
[16] Halley J W, Michalewicz M T, Tit N 1990 Phys. Rev. B 41 10165
[17] Hou Q Y, Zhang Y, Chen Y, Shang J X, Gu J H 2008 Acta Phys. Sin. 57 438 (in Chinese) [侯清玉, 张跃, 陈粤, 尚家香, 谷景华 2008 物理学报 57 438]
[18] Pournami P V, Marykutty T, George K C 2012 J. Appl. Phys. 112 104308
[19] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr 220 567
[20] Segall M D, Philip J D L 2002 J. Phys: Dondens. Matter. 14 2717
[21] Tsutomu U, Tetsuya Y, Hisayoshi I, Keisuke A 2002 J. Phys. Chem. Solids 63 1909
[22] Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458
[23] Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescuv V S 2004 J. Mat. Sci. 39 675
[24] Rumaiz A K, Ali B, Ceylan A, Boggs M, Beebe T, Shah S I 2007 Solid. State. Commun 144 334
[25] Tang H, Prasad K, Sanjinés R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042
[26] Hou Q Y, Zhang Y, Gu J H 2007 Function Mater 38 642 (in Chinese) [侯清玉, 张跃, 谷景华 2007 功能材料 38 642]
[27] Xu M L 1991 Oxides and compound semiconductor base (Xi’an: Xi’an Electronic Science Technology University Press) p218–221 (in Chinese) [徐敏龙 1991 氧化物与化合物半导体基础 (西安: 西安电子科技大学出版社) 第218–221页]
-
[1] Fujishima A, Honda K 1972 Nature 37 238
[2] Zhao Z Y, Liu Q J, Zhang J, Zhu Z Q 2007 Acta Phys. Sin. 56 6593 (in Chinese) [赵宗彦, 柳清菊, 张瑾, 朱忠其 2007 物理学报 56 6593]
[3] Xu L, Tang C Q, Qian J 2010 Acta Phys. Sin. 59 2721 (in Chinese) [徐凌, 唐超群, 钱俊 2010 物理学报 59 2721]
[4] Choi W, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669
[5] Mao L Q, Li Q L, Zhang Z J 2007 Solar Energy 81 1280
[6] Su W T, Song K X, Huo D X, Li B 2013 Curr. Appl. Phys. 13 556
[7] Tian H Y, Zhao G H, Zhang Y N, Wang Y B, Cao T C 2013 Electrochim Acta 96 199
[8] Song K N, Han X P, Shao G S 2013 J. Alloys Compd 551 118
[9] Hou Q Y, Zhang Y, Zhang T 2008 Acta Phys. Sin. 57 1862 (in Chinese) [侯清玉, 张跃, 张涛 2008 物理学报 57 1862]
[10] Li C, Hou Q Y, Zhang Z D, Zhao C W 2012 Acta Phys. Sin. 61 167103 (in Chinese) [李聪, 侯清玉, 张振铎, 赵春旺 2012 物理学报61 167103]
[11] Lin Y M Jiang Z Y, Hu X Y, Zhang X D, Fan J, Miao H, Shang Y B 2012 Chin. Phys. B 21 033103
[12] Ni L H, Liu Y, Ren Z H, Song C L, Han G R 2011 Chin. Phys. B 20 106102
[13] Liu H, Ma H T, Li X Z, Li W Z, Wu M, Bao X H 2003 Chemosphere 50 39
[14] Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuch K 2000 J. Mol. Catal. A 161 205
[15] Justicia I, Ordejón P, Canto G, Mozos J L, Fraxedas J, Battiston G A, Gerbasi R, Figueras A 2002 Adv. Mater 14 1399
[16] Halley J W, Michalewicz M T, Tit N 1990 Phys. Rev. B 41 10165
[17] Hou Q Y, Zhang Y, Chen Y, Shang J X, Gu J H 2008 Acta Phys. Sin. 57 438 (in Chinese) [侯清玉, 张跃, 陈粤, 尚家香, 谷景华 2008 物理学报 57 438]
[18] Pournami P V, Marykutty T, George K C 2012 J. Appl. Phys. 112 104308
[19] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr 220 567
[20] Segall M D, Philip J D L 2002 J. Phys: Dondens. Matter. 14 2717
[21] Tsutomu U, Tetsuya Y, Hisayoshi I, Keisuke A 2002 J. Phys. Chem. Solids 63 1909
[22] Kafizas A, Parkin I P 2011 J. Am. Chem. Soc. 133 20458
[23] Sorescu M, Diamandescu L, Tarabsanu M D, Teodorescuv V S 2004 J. Mat. Sci. 39 675
[24] Rumaiz A K, Ali B, Ceylan A, Boggs M, Beebe T, Shah S I 2007 Solid. State. Commun 144 334
[25] Tang H, Prasad K, Sanjinés R, Schmid P E, Lévy F 1994 J. Appl. Phys. 75 2042
[26] Hou Q Y, Zhang Y, Gu J H 2007 Function Mater 38 642 (in Chinese) [侯清玉, 张跃, 谷景华 2007 功能材料 38 642]
[27] Xu M L 1991 Oxides and compound semiconductor base (Xi’an: Xi’an Electronic Science Technology University Press) p218–221 (in Chinese) [徐敏龙 1991 氧化物与化合物半导体基础 (西安: 西安电子科技大学出版社) 第218–221页]
计量
- 文章访问数: 8761
- PDF下载量: 30762
- 被引次数: 0