搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中等光强纳秒激光电离苯团簇产生多价碳离子的数值模拟和实验研究

赵无垛 王卫国 李海洋

引用本文:
Citation:

中等光强纳秒激光电离苯团簇产生多价碳离子的数值模拟和实验研究

赵无垛, 王卫国, 李海洋

Numerical simulation and experimental investigation of the production of multiply charged ions by the ionization of benzene cluster with a moderate intensity laser

Zhao Wu-Duo, Wang Wei-Guo, Li Hai-Yang
PDF
导出引用
  • 飞秒强激光与团簇相互作用产生多价离子的现象已被广泛报道,然而近期多个研究小组发现当功率密度低至1010 W/cm2的纳秒激光照射团簇时,同样也观察到了多价离子的存在. 虽然可以用多光子电离引发-逆韧致吸收加热-电子碰撞电离电离机理对这种现象进行解释,但是缺乏相应的数值模拟. 建立了一个简化的数值模型,根据有质动力势Up计算团簇内电子能量,再由Lotz公式计算出相应的电离截面,最后由动力学反应速率方程计算出团簇内多价碳离子随时间的演变. 详细分析了团簇尺寸、电子密度等关键参数对多价离子产生的影响. 数值模拟结果表明:团簇电离在小于0.7 ns 时间尺度内完成,C2+,C3+和C4+多价离子强度达到平衡后,离子相对强度由大到小依次为C2+,C3+,C4+,这与实验结果相一致;多价离子的价态随着团簇尺寸的增加而升高,半径为5.6 nm的苯团簇比半径为3 nm的苯团簇更容易产生高价态的离子,这也与实验结果相一致.
    The production of multiply charged ions by the interaction of intense femtosecond laser with clusters has been widely reported. Recently, many groups discovered the multiply charged ions when the cluster was irradiated by a 532 nm nanosecond laser with the intensity as low as 1010 W/cm2. Although this interesting phenomenon could be explained by the mechanism of multiphoton ionization triggered-inverse bremsstrahlung heating-electron impact ionization, there is a lack of numerical simulation to explain the generation of multiply charged ions. In this paper, numerical simulation is performed to study the generation process of multiply charged ions in the moderate intensity laser. Firstly, the electron energy is calculated according to ponderomotive potential. Secondly, the cross section of electron impact ionization is calculated on the basis of Lotz formula. Finally, the evolution of multiply charged ions in the cluster is calculated with the kinetic reaction rate equation. The effects of cluster size and electron density on multiply charged ions are investigated in detail. Simulation results show that the ionization process is completed and the balance among C2+, C3+ and C4+ is achieved in 0.7 ns. The relative intensity sequence of multiply charged ions is C2+ C3+ C4+, which is consistent with the experimental results. In addition, numerical simulation results show that the charge state of ions is increased with the increase of cluster size, which is consistent with the experimental results.
    • 基金项目: 国家自然科学基金(批准号:11004190,21077101)和国家重大科学仪器设备开发专项基金(批准号:2011YQ05006903)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004190, 21077101) and the Special Foundation of State Major Scientific Instrument and Equipment Development of China (Grant No. 2011YQ05006903).
    [1]

    Jha J, Krishnamurthy M 2008 J. Phys. B 41 041002

    [2]

    Sumeruk H A, Kneip S, Symes D R, Churina I V, Belolipetski A V, Dyer G, Landry J, Bansal G, Bernstein A, Donnelly T D, Karmakar A, Pukhov A, Ditmire T 2007 Phys. Plasmas 14 062704

    [3]

    Ditmire T, Smith R A, Marjoribanks R S, Kulcsár G, Hutchinson M H R 1997 Appl. Phys. Lett. 71 166

    [4]

    Li S H, Wang C, Liu J S, Wang X X, Li R X, Ni G Q, Xu Z Z 2005 Acta Phys. Sin. 54 636 (in Chinese)[李邵辉, 王成, 刘建胜, 王向欣, 李儒新, 倪国权, 徐至展 2005 物理学报 54 636]

    [5]

    Sun Y Q, Chen L M, Zhang L, Mao J Y, Liu F, Li D Z, Liu C, Li W C, Wang Z H, Li Y J, Wei Z Y, Zhang J 2012 Acta Phys. Sin. 61 075206 (in Chinese)[孙彦乾, 陈黎明, 张璐, 毛婧一, 刘峰, 李大章, 刘成, 李伟昌, 王兆华, 李英骏, 魏志义, 张杰 2012 物理学报 61 075206]

    [6]

    Cang Y, Dong Q L, Wu H C, Sheng Z M, Yu W, Zhang J 2004 Chin. Phys. Lett. 21 2414

    [7]

    Liu H J, Gu Y Q, Wang H B, Zheng Z J, Ge F F, Wen X L, Jiao C Y, He Y L, Wen T S, Huang W Z, Wang G C, Zhou W M, Zhang S G, Wang X X, Zhou K N, Wang X D, Huang X J, Ni G Q 2005 Chin. Phys. Lett. 22 1174

    [8]

    Zheng L, Wang C, Li S H, Liu B C, Ni G Q, Li R X, Xu Z Z 2006 Chin. Phys. 15 697

    [9]

    Li S H, Wang C, Liu J S, Wang X X, Zhu P P, Li R X, Ni G Q, Xu Z Z 2004 Chin. Phys. Lett. 21 481

    [10]

    Li S H, Wang C, Zhu P P, Wang X X, Li R X, Ni G Q, Xu Z Z 2003 Chin. Phys. Lett. 20 1247

    [11]

    Lin J Q, Zhang J, Li Y J, Chen L M, L T Z, Teng H, Man B Y, Zhao L Z 2001 Chin. Phys. Lett. 18 211

    [12]

    Wang Q, Cheng Y L, Zhao Y P, Xia Y Q, Chen J, X, Xiao Y F 2003 Chin. Phys. Lett. 20 1309

    [13]

    Du H C, Wang H Q, Liu Z Y, Sun S H, Li L, Ma L L, Hu B T 2010 Chin. Phys. B 19 035202

    [14]

    Li H Y, Liu J S 2010 Acta Phys. Sin. 59 7850 (in Chinese)[李洪玉, 刘建胜 2010 物理学报 59 7850]

    [15]

    Li H Y, Liu J S, Wang C, Ni G Q, Li R X, Xu Z Z 2006 Chin. Phys. Lett. 23 2956

    [16]

    Rose-Petruck C, Schafer K J, Wilson K R, Barty C P J 1997 Phys. Rev. A 55 1182

    [17]

    McPherson A, Thompson B D, Borisov A B, Boyer K, Rhodes C K 1994 Nature 370 631

    [18]

    Ditmire T, Donnelly T, Rubenchik A M, Falcone R W, Perry M D 1996 Phys. Rev. A 53 3379

    [19]

    Wang W G, Li H Y, Niu D M, Wen L H, Zhang N Z 2008 Chem. Phys. 352 111

    [20]

    Niu D M, Li H Y, Liang F, Luo X L, Wen L W 2005 Appl. Phys. Lett. 87 034103

    [21]

    Niu D M, Li H Y, Liang F, Wen L H, Luo X L, Wang B, Qu H B 2005 J. Chem. Phys. 122 151103

    [22]

    Zhang N Z, Wang W G, Cang H W, Wang H L, Li H Y 2009 Chem. Phys. Lett. 469 14

    [23]

    Kong X L, Luo X L, Niu D M, Li H Y 2004 Chem. Phys. Lett. 388 139

    [24]

    Luo X L, Li H Y, Niu D W, Wen L H, Liang F, Wang B, Xiao X 2005 Phys. Rev. A 72 013201

    [25]

    Zhao W D, Wang W G, Qu P C, Hou K Y, Li H Y 2012 Chem. Phys. Lett. 543 55

    [26]

    Sharma P, Vatsa R K, Kulshreshtha S K, Jha J, Mathur D, Krishnamurthy M 2006 J. Chem. Phys. 125 034304

    [27]

    Das S, Badani P M, Sharma P, Vatsa R K 2011 Curr. Sci. 100 1008

    [28]

    Saalmann U, Siedschlag C, Rost J M 2006 J. Phys. B 39 R39

    [29]

    Krainova V P, Smirnov M B 2002 Phys. Rep. 370 237

    [30]

    Döppner T, Mller J P, Przystawik A, Göde S, Tiggesbäumker J, Meiwes-Broer K H, Varin C, Ramunno L, Brabec T, Fennel T 2010 Phys. Rev. Lett. 105 053401

    [31]

    Niu D M, Li H Y, Liang F, Wen L H, Luo X L, Wang B, Hou K Y, Zhang X X 2005 Chem. Phys. Lett. 403 218

    [32]

    Xiao X, Li H Y, Luo X L, Niu D M, Wen L H, Wang B 2005 Acta Phys. Sin. 54 5098 (in Chinese) [肖雪, 李海洋, 罗晓琳, 牛冬梅, 温丽华, 王宾 2005 物理学报 54 5098]

    [33]

    Qu P C, Wang W G, Zhao W D, Zhang G Q, Li H Y 2012 Acta Phys. Sin. 61 182101 (in Chinese) [曲丕丞, 王卫国, 赵无垛, 张桂秋, 李海洋 2012 物理学报 61 182101]

    [34]

    Niu D M, Li H Y, Luo X L, Liang F, Cheng S, Li A L 2006 Chin. Phys. 15 1511

    [35]

    Luo X L, Kong X L, Niu D M, Qu H B, Li H Y 2005 Acta Phys. Sin. 54 606 (in Chinese) [罗晓琳, 孔祥蕾, 牛冬梅, 渠洪波, 李海洋 2005 物理学报 54 606]

    [36]

    Xiao X, Li H Y, Luo X L, Niu D M, Wen L H, Wang B 2006 Acta Phys. Sin. 55 661 (in Chinese) [肖雪, 李海洋, 罗晓琳, 牛冬梅, 温丽华, 王宾 2006 物理学报 55 661]

    [37]

    Zhang N Z, Cang H W, Wang W G, Miao S Y, Jin F, Wu Q H, Hua L, Li H Y 2009 Acta Phys. Sin. 58 4556 (in Chinese) [张娜珍, 仓怀文, 王卫国, 苗书一, 金峰, 吴庆浩, 花磊, 李海洋 2009 物理学报 58 4556]

    [38]

    Karras G, Kosmidis C 2010 Int. J. Mass Spectrom. 290 133

    [39]

    Dawson J, Oberman C 1962 Phys. Fluids 5 517

    [40]

    Decker C D, Mori W B, Dawson J M, Katsouleas T 1994 Phys. Plasmas 1 4043

    [41]

    Kostyukov I Y 2001 JETP Lett. 73 393

    [42]

    Wang X L, Zhang N, Zhao Y B, Li Z L, Zhai H C, Zhu X N 2008 Acta Phys. Sin. 57 354 (in Chinese) [王晓雷, 张楠, 赵友博, 李智磊, 翟宏琛, 朱晓农 2008 物理学报 57 354]

    [43]

    Lotz W 1967 Z. Phys. 206 205

    [44]

    Lotz W 1968 Z. Phys. 216 241

    [45]

    Hilse P, Moll M, Schlanges M,Bornath T 2009 Laser Phys. 19 428

    [46]

    Zhang N Z, Wang W G, Zhao W D, Han F L, Li H Y 2010 Chem. Phys. 373 181

    [47]

    Hagena O F 1992 Rev. Sci. Instrum. 63 2374

    [48]

    Seki T, Matsuo J, Takaoka G H, Yamada I 2003 Nucl. Instrum. Meth. Phys. Res. B 206 902

    [49]

    Yang S, Daineka D V, Chatelet M 2003 Chem. Phys. Lett. 377 595

    [50]

    Last S, Schek L, Jortner J 1997 Chem. Phys. 107 6685

  • [1]

    Jha J, Krishnamurthy M 2008 J. Phys. B 41 041002

    [2]

    Sumeruk H A, Kneip S, Symes D R, Churina I V, Belolipetski A V, Dyer G, Landry J, Bansal G, Bernstein A, Donnelly T D, Karmakar A, Pukhov A, Ditmire T 2007 Phys. Plasmas 14 062704

    [3]

    Ditmire T, Smith R A, Marjoribanks R S, Kulcsár G, Hutchinson M H R 1997 Appl. Phys. Lett. 71 166

    [4]

    Li S H, Wang C, Liu J S, Wang X X, Li R X, Ni G Q, Xu Z Z 2005 Acta Phys. Sin. 54 636 (in Chinese)[李邵辉, 王成, 刘建胜, 王向欣, 李儒新, 倪国权, 徐至展 2005 物理学报 54 636]

    [5]

    Sun Y Q, Chen L M, Zhang L, Mao J Y, Liu F, Li D Z, Liu C, Li W C, Wang Z H, Li Y J, Wei Z Y, Zhang J 2012 Acta Phys. Sin. 61 075206 (in Chinese)[孙彦乾, 陈黎明, 张璐, 毛婧一, 刘峰, 李大章, 刘成, 李伟昌, 王兆华, 李英骏, 魏志义, 张杰 2012 物理学报 61 075206]

    [6]

    Cang Y, Dong Q L, Wu H C, Sheng Z M, Yu W, Zhang J 2004 Chin. Phys. Lett. 21 2414

    [7]

    Liu H J, Gu Y Q, Wang H B, Zheng Z J, Ge F F, Wen X L, Jiao C Y, He Y L, Wen T S, Huang W Z, Wang G C, Zhou W M, Zhang S G, Wang X X, Zhou K N, Wang X D, Huang X J, Ni G Q 2005 Chin. Phys. Lett. 22 1174

    [8]

    Zheng L, Wang C, Li S H, Liu B C, Ni G Q, Li R X, Xu Z Z 2006 Chin. Phys. 15 697

    [9]

    Li S H, Wang C, Liu J S, Wang X X, Zhu P P, Li R X, Ni G Q, Xu Z Z 2004 Chin. Phys. Lett. 21 481

    [10]

    Li S H, Wang C, Zhu P P, Wang X X, Li R X, Ni G Q, Xu Z Z 2003 Chin. Phys. Lett. 20 1247

    [11]

    Lin J Q, Zhang J, Li Y J, Chen L M, L T Z, Teng H, Man B Y, Zhao L Z 2001 Chin. Phys. Lett. 18 211

    [12]

    Wang Q, Cheng Y L, Zhao Y P, Xia Y Q, Chen J, X, Xiao Y F 2003 Chin. Phys. Lett. 20 1309

    [13]

    Du H C, Wang H Q, Liu Z Y, Sun S H, Li L, Ma L L, Hu B T 2010 Chin. Phys. B 19 035202

    [14]

    Li H Y, Liu J S 2010 Acta Phys. Sin. 59 7850 (in Chinese)[李洪玉, 刘建胜 2010 物理学报 59 7850]

    [15]

    Li H Y, Liu J S, Wang C, Ni G Q, Li R X, Xu Z Z 2006 Chin. Phys. Lett. 23 2956

    [16]

    Rose-Petruck C, Schafer K J, Wilson K R, Barty C P J 1997 Phys. Rev. A 55 1182

    [17]

    McPherson A, Thompson B D, Borisov A B, Boyer K, Rhodes C K 1994 Nature 370 631

    [18]

    Ditmire T, Donnelly T, Rubenchik A M, Falcone R W, Perry M D 1996 Phys. Rev. A 53 3379

    [19]

    Wang W G, Li H Y, Niu D M, Wen L H, Zhang N Z 2008 Chem. Phys. 352 111

    [20]

    Niu D M, Li H Y, Liang F, Luo X L, Wen L W 2005 Appl. Phys. Lett. 87 034103

    [21]

    Niu D M, Li H Y, Liang F, Wen L H, Luo X L, Wang B, Qu H B 2005 J. Chem. Phys. 122 151103

    [22]

    Zhang N Z, Wang W G, Cang H W, Wang H L, Li H Y 2009 Chem. Phys. Lett. 469 14

    [23]

    Kong X L, Luo X L, Niu D M, Li H Y 2004 Chem. Phys. Lett. 388 139

    [24]

    Luo X L, Li H Y, Niu D W, Wen L H, Liang F, Wang B, Xiao X 2005 Phys. Rev. A 72 013201

    [25]

    Zhao W D, Wang W G, Qu P C, Hou K Y, Li H Y 2012 Chem. Phys. Lett. 543 55

    [26]

    Sharma P, Vatsa R K, Kulshreshtha S K, Jha J, Mathur D, Krishnamurthy M 2006 J. Chem. Phys. 125 034304

    [27]

    Das S, Badani P M, Sharma P, Vatsa R K 2011 Curr. Sci. 100 1008

    [28]

    Saalmann U, Siedschlag C, Rost J M 2006 J. Phys. B 39 R39

    [29]

    Krainova V P, Smirnov M B 2002 Phys. Rep. 370 237

    [30]

    Döppner T, Mller J P, Przystawik A, Göde S, Tiggesbäumker J, Meiwes-Broer K H, Varin C, Ramunno L, Brabec T, Fennel T 2010 Phys. Rev. Lett. 105 053401

    [31]

    Niu D M, Li H Y, Liang F, Wen L H, Luo X L, Wang B, Hou K Y, Zhang X X 2005 Chem. Phys. Lett. 403 218

    [32]

    Xiao X, Li H Y, Luo X L, Niu D M, Wen L H, Wang B 2005 Acta Phys. Sin. 54 5098 (in Chinese) [肖雪, 李海洋, 罗晓琳, 牛冬梅, 温丽华, 王宾 2005 物理学报 54 5098]

    [33]

    Qu P C, Wang W G, Zhao W D, Zhang G Q, Li H Y 2012 Acta Phys. Sin. 61 182101 (in Chinese) [曲丕丞, 王卫国, 赵无垛, 张桂秋, 李海洋 2012 物理学报 61 182101]

    [34]

    Niu D M, Li H Y, Luo X L, Liang F, Cheng S, Li A L 2006 Chin. Phys. 15 1511

    [35]

    Luo X L, Kong X L, Niu D M, Qu H B, Li H Y 2005 Acta Phys. Sin. 54 606 (in Chinese) [罗晓琳, 孔祥蕾, 牛冬梅, 渠洪波, 李海洋 2005 物理学报 54 606]

    [36]

    Xiao X, Li H Y, Luo X L, Niu D M, Wen L H, Wang B 2006 Acta Phys. Sin. 55 661 (in Chinese) [肖雪, 李海洋, 罗晓琳, 牛冬梅, 温丽华, 王宾 2006 物理学报 55 661]

    [37]

    Zhang N Z, Cang H W, Wang W G, Miao S Y, Jin F, Wu Q H, Hua L, Li H Y 2009 Acta Phys. Sin. 58 4556 (in Chinese) [张娜珍, 仓怀文, 王卫国, 苗书一, 金峰, 吴庆浩, 花磊, 李海洋 2009 物理学报 58 4556]

    [38]

    Karras G, Kosmidis C 2010 Int. J. Mass Spectrom. 290 133

    [39]

    Dawson J, Oberman C 1962 Phys. Fluids 5 517

    [40]

    Decker C D, Mori W B, Dawson J M, Katsouleas T 1994 Phys. Plasmas 1 4043

    [41]

    Kostyukov I Y 2001 JETP Lett. 73 393

    [42]

    Wang X L, Zhang N, Zhao Y B, Li Z L, Zhai H C, Zhu X N 2008 Acta Phys. Sin. 57 354 (in Chinese) [王晓雷, 张楠, 赵友博, 李智磊, 翟宏琛, 朱晓农 2008 物理学报 57 354]

    [43]

    Lotz W 1967 Z. Phys. 206 205

    [44]

    Lotz W 1968 Z. Phys. 216 241

    [45]

    Hilse P, Moll M, Schlanges M,Bornath T 2009 Laser Phys. 19 428

    [46]

    Zhang N Z, Wang W G, Zhao W D, Han F L, Li H Y 2010 Chem. Phys. 373 181

    [47]

    Hagena O F 1992 Rev. Sci. Instrum. 63 2374

    [48]

    Seki T, Matsuo J, Takaoka G H, Yamada I 2003 Nucl. Instrum. Meth. Phys. Res. B 206 902

    [49]

    Yang S, Daineka D V, Chatelet M 2003 Chem. Phys. Lett. 377 595

    [50]

    Last S, Schek L, Jortner J 1997 Chem. Phys. 107 6685

计量
  • 文章访问数:  1871
  • PDF下载量:  538
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-09
  • 修回日期:  2014-01-03
  • 刊出日期:  2014-05-05

中等光强纳秒激光电离苯团簇产生多价碳离子的数值模拟和实验研究

  • 1. 中国科学院大连化学物理研究所, 大连 116023;
  • 2. 中国科学院大学, 北京 100049
    基金项目: 

    国家自然科学基金(批准号:11004190,21077101)和国家重大科学仪器设备开发专项基金(批准号:2011YQ05006903)资助的课题.

摘要: 飞秒强激光与团簇相互作用产生多价离子的现象已被广泛报道,然而近期多个研究小组发现当功率密度低至1010 W/cm2的纳秒激光照射团簇时,同样也观察到了多价离子的存在. 虽然可以用多光子电离引发-逆韧致吸收加热-电子碰撞电离电离机理对这种现象进行解释,但是缺乏相应的数值模拟. 建立了一个简化的数值模型,根据有质动力势Up计算团簇内电子能量,再由Lotz公式计算出相应的电离截面,最后由动力学反应速率方程计算出团簇内多价碳离子随时间的演变. 详细分析了团簇尺寸、电子密度等关键参数对多价离子产生的影响. 数值模拟结果表明:团簇电离在小于0.7 ns 时间尺度内完成,C2+,C3+和C4+多价离子强度达到平衡后,离子相对强度由大到小依次为C2+,C3+,C4+,这与实验结果相一致;多价离子的价态随着团簇尺寸的增加而升高,半径为5.6 nm的苯团簇比半径为3 nm的苯团簇更容易产生高价态的离子,这也与实验结果相一致.

English Abstract

参考文献 (50)

目录

    /

    返回文章
    返回