搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续波差分吸收激光雷达测量大气CO2

刘豪 舒嵘 洪光烈 郑龙 葛烨 胡以华

引用本文:
Citation:

连续波差分吸收激光雷达测量大气CO2

刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华

Continuous-wave modulation differential absorption lidar system for CO2 measurement

Liu Hao, Shu Rong, Hong Guang-Lie, Zheng Long, Ge Ye, Hu Yi-Hua
PDF
导出引用
  • 研制了一套接收硬目标回波的差分吸收激光雷达系统以用于全天候监测大气CO2浓度变化. 系统采用10和12 kHz正弦波分别对处在CO2吸收峰内和吸收峰外的波长进行强度调制,利用单频检测技术提取回波信号. 提出了一种利用激光扫频推算系统精度的方法,从而弥补了长期以来只能在理论上计算差分吸收激光雷达系统精度的不足,给实际系统自定标问题提供了一种解决方案. 该系统采用全光纤结构,结构可靠,便于移动. 利用此系统获得了上海市多天CO2浓度变化曲线,在450 m的积分路径长度上,1 s 的积分时间取得了优于3.39×10-6的测量精度.
    An intensity modulation hard-target differential laser absorption lidar system for CO2 sensing is demonstrated. On and off wavelength lasers are modulated with 10 kHz and 12 kHz sinusoidal waves. The echo is extracted using coherent detection technique. The system is fiber based, which makes it compact and removable. We obtain three day variation of horizontal column averaged CO2 concentration of Shanghai district. We also propose an accuracy evaluation method based on electronic noise analysis combined with laser frequency modulation. The result shows that the measurement precision for the column corresponds to 3.39×10-6 (rms) with 1s integral time and 450 m path.
    • 基金项目: 民用航天“十二五”预先研究计划(批准号:MYHT-201104)资助的课题.
    • Funds: Project supported by the Civil Aerospace Pre-Research Program of “12th Five-Year” Plan of China (Grant No. MYHT-201104).
    [1]

    Clissold P 2008 Candidate Earth Explorer Core Missions Reports for Assessment: Advanced Space Carbon and Climate Observation of Plant Earth (Noordwijk: ESA Communication Production Office)

    [2]

    Amediek A, Fix A, Wirth M, Ehret G 2008 Appl. Phys. B 92 295

    [3]

    Daisuke S, Chikao N, Tomohiro N, Makoto A, Yasukuni S, Masahisa N, Tetsu S 2009 Appl. Opt. 48 748

    [4]

    Shumpei K, Masaharu I, Yoshihito H, Shinichi U, Shuji K, Daisuke S, Masakatsu N 2009 Opt. Lett. 34 1513

    [5]

    Masaharu I, Shumpei K, Yoshihito H, Shinichi U, Daisuke S, Shuji K, Masakatsu N 2012 Opt. Lett. 37 2688

    [6]

    Gibert F, Flamant P H, Bruneau D, Loth C 2006 Appl. Opt. 45 4448

    [7]

    Sun X L, Abshire J B 2012 Opt. Express 20 21291

    [8]

    Lin B, Ismail S, Wallace H F, Browell E V, Nehrir A R, Dobler J, Moore B, Refaat T, Kooi S A 2013 Appl. Opt. 52 7062

    [9]

    Abshire J B, Riris H, Weaver C J, Mao J P, Allan G R, Hasselbrack W E, Browell E V 2013 Appl. Opt. 52 4446

    [10]

    Hong G L, Zhang Y C, Zhao Y F, Shao S S, Tan K, Hu H L 2006 Acta Phys. Sin. 55 983 (in Chinese) [洪光烈, 张寅超, 赵曰峰, 邵石生, 谭锟, 胡欢陵 2006 物理学报 55 983]

    [11]

    Yu H L, Hu S X, Yuan K E, Wu X Q, Cao K F, Meng X Q, Huang J, Shao S S, Xu Z H 2012 Acta Photon. Sin. 41 812 (in Chinese) [于海利, 胡顺星, 苑克娥, 吴晓庆, 曹开法, 孟祥谦, 黄见, 邵石生, 徐之海 2012 光子学报 41 812]

    [12]

    Jérôme C, Yannig D 2009 Appl. Opt. 48 5413

  • [1]

    Clissold P 2008 Candidate Earth Explorer Core Missions Reports for Assessment: Advanced Space Carbon and Climate Observation of Plant Earth (Noordwijk: ESA Communication Production Office)

    [2]

    Amediek A, Fix A, Wirth M, Ehret G 2008 Appl. Phys. B 92 295

    [3]

    Daisuke S, Chikao N, Tomohiro N, Makoto A, Yasukuni S, Masahisa N, Tetsu S 2009 Appl. Opt. 48 748

    [4]

    Shumpei K, Masaharu I, Yoshihito H, Shinichi U, Shuji K, Daisuke S, Masakatsu N 2009 Opt. Lett. 34 1513

    [5]

    Masaharu I, Shumpei K, Yoshihito H, Shinichi U, Daisuke S, Shuji K, Masakatsu N 2012 Opt. Lett. 37 2688

    [6]

    Gibert F, Flamant P H, Bruneau D, Loth C 2006 Appl. Opt. 45 4448

    [7]

    Sun X L, Abshire J B 2012 Opt. Express 20 21291

    [8]

    Lin B, Ismail S, Wallace H F, Browell E V, Nehrir A R, Dobler J, Moore B, Refaat T, Kooi S A 2013 Appl. Opt. 52 7062

    [9]

    Abshire J B, Riris H, Weaver C J, Mao J P, Allan G R, Hasselbrack W E, Browell E V 2013 Appl. Opt. 52 4446

    [10]

    Hong G L, Zhang Y C, Zhao Y F, Shao S S, Tan K, Hu H L 2006 Acta Phys. Sin. 55 983 (in Chinese) [洪光烈, 张寅超, 赵曰峰, 邵石生, 谭锟, 胡欢陵 2006 物理学报 55 983]

    [11]

    Yu H L, Hu S X, Yuan K E, Wu X Q, Cao K F, Meng X Q, Huang J, Shao S S, Xu Z H 2012 Acta Photon. Sin. 41 812 (in Chinese) [于海利, 胡顺星, 苑克娥, 吴晓庆, 曹开法, 孟祥谦, 黄见, 邵石生, 徐之海 2012 光子学报 41 812]

    [12]

    Jérôme C, Yannig D 2009 Appl. Opt. 48 5413

计量
  • 文章访问数:  2560
  • PDF下载量:  481
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-21
  • 修回日期:  2014-01-10
  • 刊出日期:  2014-05-05

连续波差分吸收激光雷达测量大气CO2

  • 1. 中国科学院上海技术物理研究所, 中国科学院空间主动光电技术重点实验室, 上海 200083;
  • 2. 解放军电子工程学院脉冲功率激光技术国家重点实验室, 合肥 230037
    基金项目: 

    民用航天“十二五”预先研究计划(批准号:MYHT-201104)资助的课题.

摘要: 研制了一套接收硬目标回波的差分吸收激光雷达系统以用于全天候监测大气CO2浓度变化. 系统采用10和12 kHz正弦波分别对处在CO2吸收峰内和吸收峰外的波长进行强度调制,利用单频检测技术提取回波信号. 提出了一种利用激光扫频推算系统精度的方法,从而弥补了长期以来只能在理论上计算差分吸收激光雷达系统精度的不足,给实际系统自定标问题提供了一种解决方案. 该系统采用全光纤结构,结构可靠,便于移动. 利用此系统获得了上海市多天CO2浓度变化曲线,在450 m的积分路径长度上,1 s 的积分时间取得了优于3.39×10-6的测量精度.

English Abstract

参考文献 (12)

目录

    /

    返回文章
    返回