搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度及深度对钛中氦泡释放过程影响的分子动力学研究

梁力 谈效华 向伟 王远 程焰林 马明旺

引用本文:
Citation:

温度及深度对钛中氦泡释放过程影响的分子动力学研究

梁力, 谈效华, 向伟, 王远, 程焰林, 马明旺

A molecular dynamics study of temperature and depth effect on helium bubble released from Ti surface

Liang Li, Tan Xiao-Hua, Xiang Wei, Wang Yuan, Cheng Yan-Lin, Ma Ming-Wang
PDF
导出引用
  • 利用分子动力学模拟方法对温度及He泡深度给金属Ti内He泡的体积、压强和释放过程等带来的影响进行了研究. 首先, 通过研究室温下He泡在金属Ti内不同深度处的状态, 得到He泡的形状、压强、体积等物理量随其深度的变化规律. 发现He泡压强随其深度增加逐渐变大, 体积则逐渐减小, 但当He泡深度增大到2.6 nm时, 二者均维持在某个固定值附近. 然后对包含有He泡的Ti体系在温度作用下的演化过程进行了模拟, 发现不同深度处He泡从金属Ti内释放出来所需要的临界温度有很大差别, 总体来看He泡越深, 释放所需的临界温度越高. 但不同温度下He原子的释放速率没有明显差别, 释放过程几乎均为瞬间完成. 最后通过对He泡内部压强和其上方金属Ti薄层的抗张强度进行统计对比, 阐述了金属Ti 体内He泡的释放机制: 当He泡内部压强大于其上方Ti薄层抗张强度时, He泡就会将Ti 薄层撕裂, 从而使He原子得到释放.
    Using molecular dynamics simulation, the effects of temperature and depth of helium bubble on volume, pressure and releasing process of helium bubble in metal Ti are investigated. First, through studying the states of helium bubble at different depths at room temperature, the variation regularities of volume, pressure and releasing process of helium bubble with its depth are acquired. The results show that with depth augmenting, the pressure of helium bubble increases gradually, while the volume decreases, but these two parameters are kept at some level when the depth is greater than 2.6 nm. Then, the evolutions of model system with helium bubble at various temperatures are simulated. The critical temperatures of helium bubble released from Ti surface at different depths are greatly different. On the whole, the critical temperature is in direct proportion to depth. But the releasing rates at different temperatures are almost unanimous. Finally, the mechanism of helium bubble released from Ti surface is explained on the basis of statistics and analyses of pressure of helium bubble and tensile strength of the metal thin film above the bubble. It is found that helium bubble would tear the Ti film above it when the pressure in helium bubble is greater than the strength of Ti film, and then helium atoms will be released from the metal.
    • 基金项目: 国家自然科学基金(批准号: 51406187)、中国工程物理研究院科学技术发展基金(批准号: 2014B0401060)和中国工程物理研究院电子工程研究所科技创新基金(批准号: S20140805)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51406187), the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2014B0401060), and the Technology Innovation Foundation of Institute of Electronic Engineering, China Academy of Engineering Physics (Grant No. S20140805).
    [1]

    Rajainmaki H, Linderoth S, Hansen H E, Nieminen R M, Bentzon M D 1988 Phys. Rev. B 38 1087

    [2]

    Singh A, Maji S, Nambissan P M G 2001 J. Phys.: Condens. Matter 13 177

    [3]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229

    [4]

    Iwakiri H, Yasunaga K, Morishita K, Yoshida N 2000 J. Nucl. Mater. 283-287 1134

    [5]

    Ehrlich K, Bloom E E, Kondo T 2000 J. Nucl. Mater. 283-287 79

    [6]

    Kawano S, Sumiya R, Fukuya K 1998 J. Nucl. Mater. 258-263 2008

    [7]

    Wang P X, Song J S 2002 Helium in Materials and the Permeation of Tritium (Beijing: National Defense Industry Press) pp1, 2 (in Chinese) [王佩璇, 宋家树 2002 材料中氦及氚渗透(北京: 国防工业出版社)第1, 2 页]

    [8]

    Li N, Fu E G, Wang H, Carter J J, Shao L, Maloy S A, Misra A, Zhang X 2009 J. Nucl. Mater. 389 233

    [9]

    Lindau R, Moslang A, Preininger D, Rieth M, Rohrigb H D 1999 J. Nucl. Mater. 271-272 450

    [10]

    Birtcher R C, Donnelly S E, Templier C 1994 Phys. Rev. B 50 764

    [11]

    Galindo R E, Veen A V, Evans J H, Schut H, Hosson J T M D 2004 Nucl. Instrum. Meth. Phys. Res. B 217 262

    [12]

    Cipiti B B, Kulcinski G L 2005 J. Nucl. Mater. 347 298

    [13]

    Li Y, Deng A H, Zhou Y L, Zhou B, Wang K, Hou Q, Shi L Q, Qin X B, Wang B Y 2012 Chin. Phys. Lett. 29 047801

    [14]

    Liu W, Wu Q Q, Chen S L, Zhu J J, An Z, Wang Y 2012 Acta Phys. Sin. 61 176802 (in Chinese) [刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊 2012 物理学报 61 176802]

    [15]

    Wang L, Hu W Y, Xiao S F, Yang J Y, Deng H Q 2011 J. Mater. Res. 26 416

    [16]

    Zhang B L, Wang J, Li M, Hou Q 2013 J. Nucl. Mater. 438 178

    [17]

    Zhang B L, Wang J, Hou Q 2011 Chin. Phys. B 20 036105

    [18]

    Wang J, Zhang B L, Zhou Y L, Hou Q 2011 Acta Phys. Sin. 60 106601 (in Chinese) [汪俊, 张宝玲, 周宇璐, 侯氢 2011 物理学报 60 106601]

    [19]

    San-Martin A, Manchester F D 1987 Bull. Alloy Phase Diagr. 8 30

    [20]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [21]

    Wang J, Hou Q, Wu Z C, Long X G, Wu X C, Luo S Z 2006 Chin. Phys. Lett. 23 1666

    [22]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926

    [23]

    Snow C S, Brewer L N, Gelles D S, Rodriguez M A 2008 J. Nucl. Mater. 374 147

    [24]

    Allenand M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon) pp56-60

  • [1]

    Rajainmaki H, Linderoth S, Hansen H E, Nieminen R M, Bentzon M D 1988 Phys. Rev. B 38 1087

    [2]

    Singh A, Maji S, Nambissan P M G 2001 J. Phys.: Condens. Matter 13 177

    [3]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229

    [4]

    Iwakiri H, Yasunaga K, Morishita K, Yoshida N 2000 J. Nucl. Mater. 283-287 1134

    [5]

    Ehrlich K, Bloom E E, Kondo T 2000 J. Nucl. Mater. 283-287 79

    [6]

    Kawano S, Sumiya R, Fukuya K 1998 J. Nucl. Mater. 258-263 2008

    [7]

    Wang P X, Song J S 2002 Helium in Materials and the Permeation of Tritium (Beijing: National Defense Industry Press) pp1, 2 (in Chinese) [王佩璇, 宋家树 2002 材料中氦及氚渗透(北京: 国防工业出版社)第1, 2 页]

    [8]

    Li N, Fu E G, Wang H, Carter J J, Shao L, Maloy S A, Misra A, Zhang X 2009 J. Nucl. Mater. 389 233

    [9]

    Lindau R, Moslang A, Preininger D, Rieth M, Rohrigb H D 1999 J. Nucl. Mater. 271-272 450

    [10]

    Birtcher R C, Donnelly S E, Templier C 1994 Phys. Rev. B 50 764

    [11]

    Galindo R E, Veen A V, Evans J H, Schut H, Hosson J T M D 2004 Nucl. Instrum. Meth. Phys. Res. B 217 262

    [12]

    Cipiti B B, Kulcinski G L 2005 J. Nucl. Mater. 347 298

    [13]

    Li Y, Deng A H, Zhou Y L, Zhou B, Wang K, Hou Q, Shi L Q, Qin X B, Wang B Y 2012 Chin. Phys. Lett. 29 047801

    [14]

    Liu W, Wu Q Q, Chen S L, Zhu J J, An Z, Wang Y 2012 Acta Phys. Sin. 61 176802 (in Chinese) [刘望, 邬琦琦, 陈顺礼, 朱敬军, 安竹, 汪渊 2012 物理学报 61 176802]

    [15]

    Wang L, Hu W Y, Xiao S F, Yang J Y, Deng H Q 2011 J. Mater. Res. 26 416

    [16]

    Zhang B L, Wang J, Li M, Hou Q 2013 J. Nucl. Mater. 438 178

    [17]

    Zhang B L, Wang J, Hou Q 2011 Chin. Phys. B 20 036105

    [18]

    Wang J, Zhang B L, Zhou Y L, Hou Q 2011 Acta Phys. Sin. 60 106601 (in Chinese) [汪俊, 张宝玲, 周宇璐, 侯氢 2011 物理学报 60 106601]

    [19]

    San-Martin A, Manchester F D 1987 Bull. Alloy Phase Diagr. 8 30

    [20]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [21]

    Wang J, Hou Q, Wu Z C, Long X G, Wu X C, Luo S Z 2006 Chin. Phys. Lett. 23 1666

    [22]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926

    [23]

    Snow C S, Brewer L N, Gelles D S, Rodriguez M A 2008 J. Nucl. Mater. 374 147

    [24]

    Allenand M P, Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon) pp56-60

  • [1] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [2] 李翔, 尹益辉, 张元章. α-Fe中氦泡极限压强的分子动力学模拟. 物理学报, 2021, 70(7): 076101. doi: 10.7498/aps.70.20201409
    [3] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [4] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理. 物理学报, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [5] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [6] 邹达人, 金硕, 许珂, 吕广宏, 赵振华, 程龙, 袁悦. 钨中氢同位素热脱附实验的速率理论模拟研究. 物理学报, 2015, 64(7): 072801. doi: 10.7498/aps.64.072801
    [7] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移. 物理学报, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [8] 张勇, 张崇宏, 周丽宏, 李炳生, 杨义涛. 氦离子注入4H-SiC晶体的纳米硬度研究. 物理学报, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [9] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究. 物理学报, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [10] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [11] 陈敏, 侯氢. 分子动力学方法研究钛中预存缺陷对氦融合的影响. 物理学报, 2010, 59(2): 1185-1189. doi: 10.7498/aps.59.1185
    [12] 何安民, 秦承森, 邵建立, 王裴. 金属Al表面熔化各向异性的分子动力学模拟. 物理学报, 2009, 58(4): 2667-2674. doi: 10.7498/aps.58.2667
    [13] 陈敏, 汪俊, 侯氢. 氦对钛的体胀及稳定性影响的分子动力学模拟. 物理学报, 2009, 58(2): 1149-1153. doi: 10.7498/aps.58.1149
    [14] 王海燕, 祝文军, 邓小良, 宋振飞, 陈向荣. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究. 物理学报, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [15] 王海燕, 祝文军, 宋振飞, 刘绍军, 陈向荣, 贺红亮. 氦泡对铝的弹性性质的影响. 物理学报, 2008, 57(6): 3703-3708. doi: 10.7498/aps.57.3703
    [16] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] 周宗荣, 王 宇, 夏源明. γ-TiAl金属间化合物面缺陷能的分子动力学研究. 物理学报, 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  6728
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-24
  • 修回日期:  2014-09-22
  • 刊出日期:  2015-02-05

/

返回文章
返回