搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝纳米颗粒的热物性及相变行为的分子动力学模拟

林长鹏 刘新健 饶中浩

引用本文:
Citation:

铝纳米颗粒的热物性及相变行为的分子动力学模拟

林长鹏, 刘新健, 饶中浩

Molecular dynamics simulation of the thermophysical properties and phase change behaviors of aluminum nanoparticles

Lin Chang-Peng, Liu Xin-Jian, Rao Zhong-Hao
PDF
导出引用
  • 采用分子动力学方法模拟了纳米金属铝在粒径为0.8-3.2 nm 时的熔点、密度和声子热导率的变化, 研究了粒径为1.6 nm的铝纳米颗粒的密度、比热和声子热导率随温度的变化. 采用原子嵌入势较好地模拟了纳米金属铝的热物性及相变行为, 根据能量-温度曲线和比热容-温度曲线对铝纳米颗粒的相变温度进行了研究, 并利用表面能理论、尺寸效应理论对铝纳米颗粒熔点的变化进行了分析. 随着纳米粒径的不断增大, 铝纳米颗粒的熔点呈递增状态, 当粒径在2.2-3.2 nm时, 熔点的增幅减缓, 但仍处于递增趋势. 随着纳米粒径的增大, 铝纳米颗粒的密度呈单调递减, 热导率则呈线性单调递增, 且热导率的变化情况符合声子理论. 随着温度的升高, 粒径为1.6 nm的铝纳米颗粒的密度、热导率均减小. 该模拟从微观原子角度对纳米材料的热物性进行了研究, 对设计基于铝纳米颗粒的相变材料具有指导意义.
    With the development of energy storage technology, phase change materials which can be used to store thermal energy have received much attention in recent years. The nano-metallic materials are universally used as phase change materials due to their many desirable thermophysical properites. In this paper, the molecular dynamics simulation method is adopted to simulate the variations of melting point, density and phonon thermal conductivity of the nano aluminum with grain size ranging from 0.8 nm to 3.2 nm. The variations of density, specific heat capacity and phonon thermal conductivity with temperature of aluminum nanoparticles at a grain size of 1.6 nm are also studied. By using the embedded-atom potential, the thermophysical properties and phase change behaviors of aluminum nanoparticles are stimulated. The phase transition temperature of aluminum nanoparticles is studied based on the energy-temperature curve and the specific heat capacity-temperature curve. The surface energy theory and the size effect theory are applied to the analysis of the variation of the melting point of the aluminum nanoparticles, and the results show that the melting point increases as grain size augments, and it increases slowly when its grain size is between 2.2 nm and 3.2 nm but still holds the trend of increase. In order to obtain accurate thermal conductivity, the Green-Kubo method is adopted to calculate the phonon thermal conductivity of aluminum nanoparticle. As the grain size of aluminum nanoparticles increases, its density monotonically decreases, and the thermal conductivity monotonically increases linearly, which is in line with the theory of phonon. Similarly, with the increase of temperature, the density and thermal conductivity of aluminum nanoparticles of 1.6 nm in grain size both decrease. Moreover, the density of aluminum nanoparticle is generally lower than that of its bulk material. The study also shows that the heat transfer manner of aluminum nanoparticle is based on ballistic-diffusive heat conduction instead of the traditional diffusive heat conduction when it is in a nanoscale. The simulation studies the thermophysical properties of nanoparticles from the atomic perspective, and is of significance for guiding the design of the phase change materials based on the aluminum nanoparticles for thermal energy storage.
    • 基金项目: 国家自然科学基金(批准号: U1407125)和江苏省自然科学基金青年基金(批准号: BK20140190) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1407125) and the Young Scientists Fund of the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140190).
    [1]

    Ge H, Li H, Mei S, Liu J 2013 Renew Sust. Energy Rev. 21 331

    [2]

    Farid M M, Khudhair A M, Razack S A K, Al-Hallaj S 2004 Energy Conv. Mange. 45 1597

    [3]

    Farkas D, Birchenall C E 1985 Metall Trans. A 16A 323

    [4]

    Birchenall C E, Riechman A F 1980 Metall Trans. A 11A 1415

    [5]

    Gleiter H 2000 Acta Mater. 48 1

    [6]

    Lewis L J, Jensen P, Barrat J L 1997 Phys. Rev. B 56 2248

    [7]

    Valkealahti S, Manninen M 1997 J. Phys.: Condens. Matter 9 4041

    [8]

    Sankar N, Mathew N, Sobhan C B 2008 Int. Commun. Heat Mass Trans. 35 867

    [9]

    Lewis L J, Jensen P, Combe N, Barrat J L 2000 Phys. Rev. B 61 16084

    [10]

    Taherkhania F, Akbarzadeh H, Abroshan H, Fortunelli A 2012 Fluid Phase Equilibr. 335 26

    [11]

    Yoshikawa T, Morita K 2003 J. Electrochem. Soc. 150 G465

    [12]

    Mench M M, Kuo K K, Yeh C L, Lu Y C 1998 Combust. Sci. Technol. 135 269

    [13]

    DeSena J T, Kuo K K 1999 J. Propul. Power 15 794

    [14]

    Mettawee E B S, Assassa G M R 2007 Sol. Energy 81 839

    [15]

    Levchenko E V, Evteev A V, Löwisch G G, Belova I V, Murch G E 2012 Intermetallics 22 193

    [16]

    Puri P, Yang V 2007 J. Phys. Chem. C 111 11776

    [17]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [18]

    Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y, Asta M 2003 Philos. Mag. 83 3977

    [19]

    Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-long A K, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta Mater. 49 4005

    [20]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [21]

    Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602 (in Chinese) [冯黛丽, 冯妍卉, 张欣欣 2013 物理学报 62 083602]

    [22]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [23]

    Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518

    [24]

    Lai S L, Carlsson J R A, Allen L H 1998 Appl. Phys. Lett. 72 1098

    [25]

    Sun J, Simon S L 2007 Thermochim. Acta 463 32

    [26]

    Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉 2013 物理学报 62 026501]

    [27]

    Yuan S P, Jiang P X 2004 Int. J. Thermophys. 27 581

    [28]

    Hua Y C, Cao B Y 2014 Int. J. Heat Mass Transfer 78 755

    [29]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 物理学报 62 244401]

  • [1]

    Ge H, Li H, Mei S, Liu J 2013 Renew Sust. Energy Rev. 21 331

    [2]

    Farid M M, Khudhair A M, Razack S A K, Al-Hallaj S 2004 Energy Conv. Mange. 45 1597

    [3]

    Farkas D, Birchenall C E 1985 Metall Trans. A 16A 323

    [4]

    Birchenall C E, Riechman A F 1980 Metall Trans. A 11A 1415

    [5]

    Gleiter H 2000 Acta Mater. 48 1

    [6]

    Lewis L J, Jensen P, Barrat J L 1997 Phys. Rev. B 56 2248

    [7]

    Valkealahti S, Manninen M 1997 J. Phys.: Condens. Matter 9 4041

    [8]

    Sankar N, Mathew N, Sobhan C B 2008 Int. Commun. Heat Mass Trans. 35 867

    [9]

    Lewis L J, Jensen P, Combe N, Barrat J L 2000 Phys. Rev. B 61 16084

    [10]

    Taherkhania F, Akbarzadeh H, Abroshan H, Fortunelli A 2012 Fluid Phase Equilibr. 335 26

    [11]

    Yoshikawa T, Morita K 2003 J. Electrochem. Soc. 150 G465

    [12]

    Mench M M, Kuo K K, Yeh C L, Lu Y C 1998 Combust. Sci. Technol. 135 269

    [13]

    DeSena J T, Kuo K K 1999 J. Propul. Power 15 794

    [14]

    Mettawee E B S, Assassa G M R 2007 Sol. Energy 81 839

    [15]

    Levchenko E V, Evteev A V, Löwisch G G, Belova I V, Murch G E 2012 Intermetallics 22 193

    [16]

    Puri P, Yang V 2007 J. Phys. Chem. C 111 11776

    [17]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443

    [18]

    Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y, Asta M 2003 Philos. Mag. 83 3977

    [19]

    Zhou X W, Wadley H N G, Johnson R A, Larson D J, Tabat N, Cerezo A, Petford-long A K, Smith G D W, Clifton P H, Martens R L, Kelly T F 2001 Acta Mater. 49 4005

    [20]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [21]

    Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602 (in Chinese) [冯黛丽, 冯妍卉, 张欣欣 2013 物理学报 62 083602]

    [22]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306

    [23]

    Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518

    [24]

    Lai S L, Carlsson J R A, Allen L H 1998 Appl. Phys. Lett. 72 1098

    [25]

    Sun J, Simon S L 2007 Thermochim. Acta 463 32

    [26]

    Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501 (in Chinese) [黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉 2013 物理学报 62 026501]

    [27]

    Yuan S P, Jiang P X 2004 Int. J. Thermophys. 27 581

    [28]

    Hua Y C, Cao B Y 2014 Int. J. Heat Mass Transfer 78 755

    [29]

    Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401 (in Chinese) [华钰超, 董源, 曹炳阳 2013 物理学报 62 244401]

  • [1] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [2] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [3] 李静, 李绍伟, 蔡迪, 廖燕宁. 石墨烯气凝胶复合相变材料的热物性研究. 物理学报, 2021, 70(4): 040503. doi: 10.7498/aps.70.20201499
    [4] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [5] 蔡迪, 李静, 焦乃勋. 纳米石墨烯片-正十八烷复合相变材料制备及热物性研究. 物理学报, 2019, 68(10): 100502. doi: 10.7498/aps.68.20182068
    [6] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [7] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [8] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒. 相变材料热物理性质的分子动力学模拟. 物理学报, 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [9] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移. 物理学报, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [10] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [11] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究. 物理学报, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [12] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [13] 周宗荣, 王 宇, 夏源明. γ-TiAl金属间化合物面缺陷能的分子动力学研究. 物理学报, 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [14] 刘 浩, 柯孚久, 潘 晖, 周 敏. 铜-铝扩散焊及拉伸的分子动力学模拟. 物理学报, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [15] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [16] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [18] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  7016
  • PDF下载量:  5178
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2014-12-04
  • 刊出日期:  2015-04-05

/

返回文章
返回