搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ybar-y图的光学结构计算方法研究

吕向博 朱菁 杨宝喜 黄惠杰

引用本文:
Citation:

基于ybar-y图的光学结构计算方法研究

吕向博, 朱菁, 杨宝喜, 黄惠杰

An approach for calculating the optical structure based on ybar-y diagram

Lü Xiang-Bo, Zhu Jing, Yang Bao-Xi, Huang Hui-Jie
PDF
导出引用
  • 本文基于ybar-y图, 建立了计算光学系统一阶结构的数学模型, 并利用粒子群优化算法对模型进行了求解, 可以自动优化出各种光学系统的一阶结构. 编写了一套含图形用户界面(GUI)的软件, 将光学系统的基本设计要求进行处理后导入GUI, 求解之后利用商用光学设计软件如ZEMAX等, 将一阶结构转换为实际透镜结构, 然后经过透镜优化, 就可以设计出满足要求的光学系统. 根据本文所提出的光学结构计算方法, 首先进行了1300万像素手机摄像物镜的设计, 该物镜使用了4片非球面, 各项性能指标能够满足设计要求. 然后设计出一套头盔显示光学系统的目镜, 使用了两片非球面透镜实现了90°的视场角, 其他的性能指标也都满足要求. 两类光学系统的设计实例验证了该方法是一种可靠的光学系统一阶结构获取方法.
    The first-order quantity of the optical structure can be obtained using the ybar-y diagram and this diagram has a control point quantity. Based on the concept and quantity of the ybar-y diagram, this paper establishes a mathematical model to calculate an optical system’s first-order structure. The aberration is induced by the deflection of the transmission rays. If a first-order structure has a minimal total deflection angle of the first paraxial ray and the second paraxial ray, the higher order aberration will have a small value and the calculated first-order optical structure will be the best. According to the mathematical model, the issue of optical structure calculation is converted to a numerical optimization problem. And the objective function, i.e. the sum of the first and second paraxial ray’s deflection angles, is constructed. After comparison among etween many kinds of numerical optimization algorithms, the particle swarm optimization algorithm is used to solve the problem. Then a calculation program containing graphical user interface (GUI) is developed to calculate the first-order structure quickly and efficiently. The basic design parameters of the optical system are imported into the GUI after some treatments, then the resulting first-order structure is obtained after some clicks of the mouse. The resulting structure is thereafter converted to a practical lens system by the use of commercially available optical design software such as ZEMAX. After a lens optimization process, an actual optical system is accomplished. According to the method proposed in this paper and by the use of the calculation program, a 13 megapixel mobile phone camera lens is designed first. The F# of this lens system is 2.3 and the full field of viewing angle is 70 degree. The system has a total length of 4.5 mm and a distortion of 1.2%. Only four aspheric lenses are used and the other optical performance meets the design requirements as well. In addition, an eyepiece of helmet-mounted display system is designed, in which only two lenses are used and a visual field angle of 90 degree is achieved. The entrance pupil is 5 mm width and the image diagonal length is 65 mm. This system has a total length less than 45 mm and eye relief greater than 12 mm. Other performance of the eyepiece can also meet the requirements. These designs of the two optical systems demonstrate that the proposed method is reliable in calculating the optical structure of the optical system.
    • 基金项目: 国家科技重大专项(批准号:2009ZX02205-001)、国家国际科技合作专项(批准号:2011DFR10010)和上海市科技人才计划项目(批准号:14YF1406300)资助的课题.
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009ZX02205-001), the International S&T Cooperation Program of China (Grant No. 2011DFR10010), and the Shanghai Science and Technology Talent Planning Project, China (Grant No. 14YF1406300).
    [1]

    Zeng F, Zhang X, Zhang J P, Shi G W, Qu H M, Zhang J Z 2013 Acta Optica Sinica 33 0909001 (in Chinese) [曾飞, 张新, 张建萍, 史广维, 曲贺盟, 张继真 2013光学学报 33 0909001]

    [2]

    Zhang H J 2005 Chinese Journal of Lasers 32 856 (in Chinese) [张慧娟 2005中国激光 32 856]

    [3]

    Li G, Wang J Y, Zhang Y 2011 Appl. Opt. 32 420 (in Chinese) [李广, 汪建业, 张燕 2011 应用光学 32 420]

    [4]

    Zhang Y M 2008 Applied optics 3rd ed (Beijing:Publishing House of Electronics Industry) pp602-658 (in Chinese) [张以谟 2008 应用光学第3版 (北京:电子工业出版社) 第602-658页]

    [5]

    Delano E 1963 Appl. Opt. 2 1251

    [6]

    Pegis R J, Vogl T P, Rigler A K, Walters R 1967 Appl. Opt. 6 969

    [7]

    López-López F J 1970 Appl. Opt. 9 2485

    [8]

    Zhuang S L, Zheng Q, Yu F T S 1982 Opt. Lett. 7 581

    [9]

    Harrigan M E, Loce R P, Rogers J 1988 Appl. Opt. 27 459

    [10]

    Kessler D, Shack R V 1992 Appl. Opt. 31 2692

    [11]

    Wang Z J 2006 Handbook of practical optical technology (Beijing:China Machine Press) pp278-317 (in Chinese) [王之江 2006 实用光学技术手册 (北京:机械工业出版社) 第278-317页]

    [12]

    Nocedal J, Wright S J 2000 Numerical optimization (New York:Springer) pp1-10

    [13]

    Li S Y, Du Z H, Wu M Y, Zhu J, Li S L 2001 Acta Phys. Sin. 50 1260 (in Chinese) [李树有, 都志辉, 吴梦月, 朱静, 李三立 2001 物理学报 50 1260]

    [14]

    Zhang J J, Ji Y, Yao D C, Chen J B 1996 Acta Phys. Sin. 45 789 (in Chinese) [张静娟, 姬扬, 姚德成, 陈俊本 1996 物理学报 45 789]

    [15]

    Eberhart R C, Shi Y 2001 Proceedings of Evolutionary Computation Seoul May 27-30, 2001 p81

    [16]

    Meiron J 1965 J. Opt. Soc. Am. 55 1105

  • [1]

    Zeng F, Zhang X, Zhang J P, Shi G W, Qu H M, Zhang J Z 2013 Acta Optica Sinica 33 0909001 (in Chinese) [曾飞, 张新, 张建萍, 史广维, 曲贺盟, 张继真 2013光学学报 33 0909001]

    [2]

    Zhang H J 2005 Chinese Journal of Lasers 32 856 (in Chinese) [张慧娟 2005中国激光 32 856]

    [3]

    Li G, Wang J Y, Zhang Y 2011 Appl. Opt. 32 420 (in Chinese) [李广, 汪建业, 张燕 2011 应用光学 32 420]

    [4]

    Zhang Y M 2008 Applied optics 3rd ed (Beijing:Publishing House of Electronics Industry) pp602-658 (in Chinese) [张以谟 2008 应用光学第3版 (北京:电子工业出版社) 第602-658页]

    [5]

    Delano E 1963 Appl. Opt. 2 1251

    [6]

    Pegis R J, Vogl T P, Rigler A K, Walters R 1967 Appl. Opt. 6 969

    [7]

    López-López F J 1970 Appl. Opt. 9 2485

    [8]

    Zhuang S L, Zheng Q, Yu F T S 1982 Opt. Lett. 7 581

    [9]

    Harrigan M E, Loce R P, Rogers J 1988 Appl. Opt. 27 459

    [10]

    Kessler D, Shack R V 1992 Appl. Opt. 31 2692

    [11]

    Wang Z J 2006 Handbook of practical optical technology (Beijing:China Machine Press) pp278-317 (in Chinese) [王之江 2006 实用光学技术手册 (北京:机械工业出版社) 第278-317页]

    [12]

    Nocedal J, Wright S J 2000 Numerical optimization (New York:Springer) pp1-10

    [13]

    Li S Y, Du Z H, Wu M Y, Zhu J, Li S L 2001 Acta Phys. Sin. 50 1260 (in Chinese) [李树有, 都志辉, 吴梦月, 朱静, 李三立 2001 物理学报 50 1260]

    [14]

    Zhang J J, Ji Y, Yao D C, Chen J B 1996 Acta Phys. Sin. 45 789 (in Chinese) [张静娟, 姬扬, 姚德成, 陈俊本 1996 物理学报 45 789]

    [15]

    Eberhart R C, Shi Y 2001 Proceedings of Evolutionary Computation Seoul May 27-30, 2001 p81

    [16]

    Meiron J 1965 J. Opt. Soc. Am. 55 1105

  • [1] 沈晓阳, 成一灏, 夏林. 紧凑型冷原子高分辨成像系统光学设计. 物理学报, 2024, 73(6): 066701. doi: 10.7498/aps.73.20231689
    [2] 黄一帆, 邢阳光, 沈文杰, 彭吉龙, 代树武, 王颖, 段紫雯, 闫雷, 刘越, 李林. 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计. 物理学报, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [3] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法. 物理学报, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [4] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展. 物理学报, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [5] 邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平. 光声光谱仪用三维扩展光源光场整形系统设计与实验. 物理学报, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [6] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统. 物理学报, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [7] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [8] 张书赫, 邵梦, 张盛昭, 周金华. 傅里叶域中的光线. 物理学报, 2019, 68(21): 214202. doi: 10.7498/aps.68.20190839
    [9] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计. 物理学报, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [10] 冯帅, 常军, 牛亚军, 穆郁, 刘鑫. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法. 物理学报, 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [11] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计. 物理学报, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [12] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计. 物理学报, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [13] 严雄伟, 王振国, 蒋新颖, 郑建刚, 李敏, 荆玉峰. 基于微透镜阵列匀束的激光二极管面阵抽运耦合系统分析. 物理学报, 2018, 67(18): 184201. doi: 10.7498/aps.67.20172473
    [14] 沈本兰, 常军, 王希, 牛亚军, 冯树龙. 三反射主动变焦系统设计. 物理学报, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [15] 裴琳琳, 吕群波, 王建威, 刘扬阳. 编码孔径成像光谱仪光学系统设计. 物理学报, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [16] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [17] 孙金霞, 潘国庆, 刘英. 面对称光学系统的初级波像差理论研究. 物理学报, 2013, 62(9): 094203. doi: 10.7498/aps.62.094203
    [18] 吴逢铁, 江新光, 刘彬, 邱振兴. 轴棱锥产生无衍射光束自再现特性的几何光学分析. 物理学报, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [19] 董科研, 孙 强, 李永大, 张云翠, 王 健, 葛振杰, 孙金霞, 刘建卓. 折射/衍射混合红外双焦光学系统设计. 物理学报, 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
    [20] 王 方, 朱启华, 蒋东镔, 张清泉, 邓 武, 景 峰. 多程放大系统主放大级光学优化设计. 物理学报, 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
计量
  • 文章访问数:  6038
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-16
  • 修回日期:  2014-11-30
  • 刊出日期:  2015-06-05

/

返回文章
返回