搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

303MHz高重复频率掺Er光纤飞秒激光器

刘欢 巩马理 曹士英 林百科 方占军

引用本文:
Citation:

303MHz高重复频率掺Er光纤飞秒激光器

刘欢, 巩马理, 曹士英, 林百科, 方占军

A 303 MHz fundamental repetition rate femtosecond Er:fiber ring laser

Liu Huan, Gong Ma-Li, Cao Shi-Ying, Lin Bai-Ke, Fang Zhan-Jun
PDF
导出引用
  • 高重复频率掺Er光纤飞秒激光器在光学频率梳、超高速光学采样等领域具有很重要的作用. 本文采用非线性偏振旋转锁模机理, 在掺Er光纤飞秒激光器中实现了重复频率为303 MHz的锁模脉冲输出. 通过优化腔内色散, 激光器腔内色散在零色散附近偏负值, 锁模后工作在展宽脉冲锁模状态. 在817 mW抽运功率下, 激光器在连续光状态下可以输出125 mW的平均功率, 在锁模状态下可以输出69 mW的平均功率, 脉冲宽度为90 fs. 当抽运功率处于700-817 mW时, 激光器可以实现自启动锁模. 激光器重复频率在5 h内的漂移量为30 Hz.
    High-repetition-rate fiber laser has widely applications in the field of femtosecond frequency comb, ultra-fast optical sampling, and so on. In this paper, an Er-doped femtosecond fiber laser with a repetition rate of 303 MHz is demonstrated based on the mechanism of nonlinear polarization rotation. By means of optimization of cavity dispersion, the net dispersion in fiber cavity is a little negative nearby zero point. After mode locking, the laser is operating in the stretched-pulse regime. At a pump power of 817 mW, the output power of the laser is 125 mW in continue-wave state, and 69 mW in mode-locking state. The laser directly generates 90 fs before dispersion compensation. Mode locking can self-start at the pump power of 700-817 mW. Repetition rate drift of the mode-locked laser is 30 Hz in five hours.
    • 基金项目: 清华大学自主科研计划(批准号:20131089299),质检公益性行业科研专项(批准号:201310007),北京高等学校青年英才计划(批准号:YETP0087)和精密测试技术及仪器国家重点实验室开放基金(批准号:pil1201)资助的课题.
    • Funds: Project supported by the Tsinghua University Initiative Scientific Research Program, China (Grant No. 20131089299), the Special Scientific Research Foundation of General Administration of Quality Supervision, Inspection and Quarantine of China (Grant No. 20130007), the Beijing Higher Education Young Elite Teacher Project of China (Grant No. YETP0087), and the State Key Laboratory of Precision Measuring Technology and Instruments, China (Grant No. pil1201).
    [1]

    Renninger W H, Chong A, Wise F W 2011 Opt. Express 19 22496

    [2]

    Tamura K, Ippen E P, Haus H A, Nelson L E 1993 Opt. Lett. 18 1080

    [3]

    Chernysheva M A, Krylov A A, Kryukov P G, Arutyunyan N R, Pozharov A S, Obraztsova E D, Dianov E M 2012 Opt. Express 20 B124

    [4]

    Jung M, Koo J, Park J, Song Y, Jhon Y M, Lee K, Lee S, Lee J H 2013 Opt. Express 21 20062

    [5]

    Ruehl A, Marcinkevicius A, Fermann M E, Hartl I 2010 Opt. Lett. 35 3015

    [6]

    Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jorgensen C G 2004 Opt. Lett. 29 250

    [7]

    Mills A A, Gatti D, Jiang J, Mohr C, Mefford W, Gianfrani L, Fermann M, Hartl I, Marangoni M 2012 Opt. Lett. 37 4083

    [8]

    Ma D, Cai Y, Zhou C, Zong W J, Chen L L, Zhang Z G 2010 Opt. Lett. 35 2858

    [9]

    Renninger W H, Wise F W 2014 IEEE J. Sel. Top Quant. Elect. 21 101

    [10]

    Nicholson J W, DiGiovanni D J 2005 IEEE Photon. Technol. Lett. 17750

    [11]

    Li C, Wang G Z, Jiang T X, Wang A M, Zhang Z G 2013 Opt. Lett. 38 314

    [12]

    Byun H, Pudo D, Chen J, Ippen E P, Kärtner F X 2008 Opt. Lett. 33 2221

    [13]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077

    [14]

    Chen J, Sickler J W, Ippen E P, Kärtner F X 2007 Opt. Lett. 32 1566

    [15]

    Peng J L, Liu T A, and Shu R H 2009 Proceedings of the 2009 IEEE International Frequency Control Symposium jointly with the 22nd European Frequency and Time Forum (IFCS/EFTF) 344

    [16]

    Cao S Y, Meng F, Lin B K, Fang Z J and Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205]

  • [1]

    Renninger W H, Chong A, Wise F W 2011 Opt. Express 19 22496

    [2]

    Tamura K, Ippen E P, Haus H A, Nelson L E 1993 Opt. Lett. 18 1080

    [3]

    Chernysheva M A, Krylov A A, Kryukov P G, Arutyunyan N R, Pozharov A S, Obraztsova E D, Dianov E M 2012 Opt. Express 20 B124

    [4]

    Jung M, Koo J, Park J, Song Y, Jhon Y M, Lee K, Lee S, Lee J H 2013 Opt. Express 21 20062

    [5]

    Ruehl A, Marcinkevicius A, Fermann M E, Hartl I 2010 Opt. Lett. 35 3015

    [6]

    Washburn B R, Diddams S A, Newbury N R, Nicholson J W, Yan M F, Jorgensen C G 2004 Opt. Lett. 29 250

    [7]

    Mills A A, Gatti D, Jiang J, Mohr C, Mefford W, Gianfrani L, Fermann M, Hartl I, Marangoni M 2012 Opt. Lett. 37 4083

    [8]

    Ma D, Cai Y, Zhou C, Zong W J, Chen L L, Zhang Z G 2010 Opt. Lett. 35 2858

    [9]

    Renninger W H, Wise F W 2014 IEEE J. Sel. Top Quant. Elect. 21 101

    [10]

    Nicholson J W, DiGiovanni D J 2005 IEEE Photon. Technol. Lett. 17750

    [11]

    Li C, Wang G Z, Jiang T X, Wang A M, Zhang Z G 2013 Opt. Lett. 38 314

    [12]

    Byun H, Pudo D, Chen J, Ippen E P, Kärtner F X 2008 Opt. Lett. 33 2221

    [13]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077

    [14]

    Chen J, Sickler J W, Ippen E P, Kärtner F X 2007 Opt. Lett. 32 1566

    [15]

    Peng J L, Liu T A, and Shu R H 2009 Proceedings of the 2009 IEEE International Frequency Control Symposium jointly with the 22nd European Frequency and Time Forum (IFCS/EFTF) 344

    [16]

    Cao S Y, Meng F, Lin B K, Fang Z J and Li T C 2012 Acta Phys. Sin. 61 134205 (in Chinese) [曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205]

  • [1] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [2] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [3] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [4] 曹士英, 林百科, 袁小迪, 丁永今, 孟飞, 方占军. 掺Er光纤飞秒激光器中电光晶体对激光器参数的影响. 物理学报, 2021, 70(7): 074203. doi: 10.7498/aps.70.20201564
    [5] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [6] 刘欢, 曹士英, 于洋, 林百科, 方占军. 级联掺Yb增益光纤提高拍频信号信噪比的实验研究. 物理学报, 2017, 66(2): 024206. doi: 10.7498/aps.66.024206
    [7] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量. 物理学报, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [8] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [9] 刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 姜海峰, 刘涛, 张首刚. 基于光纤的光学频率传递研究. 物理学报, 2015, 64(12): 120602. doi: 10.7498/aps.64.120602
    [10] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [11] 刘欢, 曹士英, 孟飞, 林百科, 方占军. 覆盖可见光波长的掺Er光纤飞秒光学频率梳. 物理学报, 2015, 64(9): 094204. doi: 10.7498/aps.64.094204
    [12] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [13] 曹士英, 孟飞, 方占军, 李天初. 掺Er光纤飞秒激光器中高信噪比载波包络位相偏移频率获取的实验研究. 物理学报, 2012, 61(6): 064208. doi: 10.7498/aps.61.064208
    [14] 曹士英, 孟飞, 林百科, 方占军, 李天初. 长时间精密锁定的掺Er光纤飞秒光学频率梳. 物理学报, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [15] 曹士英, 方占军, 孟飞, 王强, 李天初. 双路光谱展宽的钛宝石飞秒光学频率梳系统. 物理学报, 2011, 60(8): 080601. doi: 10.7498/aps.60.080601
    [16] 孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军. 光纤飞秒光学频率梳的研制及绝对光学频率测量. 物理学报, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [17] 曹士英, 蔡岳, 王贵重, 孟飞, 张志刚, 方占军, 李天初. 掺Er光纤飞秒激光器载波包络位相偏移的探测. 物理学报, 2011, 60(9): 094208. doi: 10.7498/aps.60.094208
    [18] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生. 基于偏振保持掺Er3+光纤的高稳定性单波长光纤激光器. 物理学报, 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [19] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
    [20] 方占军, 王 强, 王民明, 孟 飞, 林百科, 李天初. 飞秒光梳和碘稳频532nm Nd:YAG激光频率的测量. 物理学报, 2007, 56(10): 5684-5690. doi: 10.7498/aps.56.5684
计量
  • 文章访问数:  5687
  • PDF下载量:  494
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-10
  • 修回日期:  2014-11-21
  • 刊出日期:  2015-06-05

/

返回文章
返回