搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu/Al引线键合界面金属间化合物生长过程的原位实验研究

杨庆龄 陈奕仪 吴幸 沈国瑞 孙立涛

引用本文:
Citation:

Cu/Al引线键合界面金属间化合物生长过程的原位实验研究

杨庆龄, 陈奕仪, 吴幸, 沈国瑞, 孙立涛

In-situ investigation on the growth of Cu-Al intermetallic compounds in Cu wire bonding

Yang Qing-Ling, Tan Yik-Yee, Wu Xing, Sim Kok Swee, Sun Li-Tao
PDF
导出引用
  • 铜引线键合由于在价格、电导率和热导率等方面的优势有望取代传统的金引线键合, 然而Cu/Al引线键合界面的金属间化合物(intermetallic compounds, IMC)的过量生长将增大接触电阻和降低键合强度, 从而影响器件的性能和可靠性. 针对以上问题, 本文基于原位高分辨透射电子显微镜技术, 研究了在50220 ℃退火温度下, Cu/Al引线键合界面IMC的生长问题, 实时观测到了Cu/Al IMC的动态生长及结构演变过程. 实验结果表明, 退火前颗粒状的Cu/Al IMC 分布在键合界面, 主要成分为Cu9Al4, 少量成分为CuAl2. 退火后Cu/Al IMC的成分是: 靠近Cu一端为Cu9Al4, 远离Cu的一端为CuAl2. 同时基于原位观测Cu/Al IMC的动态生长过程, 计算得到了Cu/Al IMC 不同温度下的反应速率和激活能, 给出了基于原位实验结果的Cu/Al IMC的生长公式, 为优化Cu/Al引线键合工艺和提高Cu/Al引线键合的可靠性提供了指导.
    According to Moore's Law, as the feature size of semiconductor devices becoming smaller and smaller, the chip integration degree keeps increasing. In particular, accompanying with the development of high chip integration and unit size reduction, the metal interconnects, i. e. the wire bonding, are becoming a challenging problem. Copper wire is believed to be an excellent metal for wire bonding, instead of gold wire, due to its attractive advantages such as low cost, favorable electrical and thermal conductivities etc. However, the excess Cu/Al intermetallic compounds (IMC) at the interface of copper wire and aluminum pad will increase the contact resistance and reduce bonding strength. This can affect the properties and reliability of devices. Currently, the evolutions of the interfacial microstructures as well as the growth mechanism of Cu/Al IMC at the bonding interface under thermal condition are still unclear.In-situ transmission electron microscope (TEM) has high spatial resolution and strong analysis ability. With fast CCD cameras, TEM can also record the dynamic structure evolution of the sample in real time. Combined with multi-function holders, TEM can also exert diverse fields and loads on the sample and synchronously monitor their structures and component evolutions. Hence, in situ TEM provides an advanced technique to explore the structural evolution and growth mechanism of Cu/Al IMC.In this paper, the growth mechanism of Cu/Al IMC is investigated during the annealing temperature from 50-220 ℃ based on the in-situ high resolution transmission electron microscopy (in-situ HRTEM). Specifically, the dynamic growth and structural evolution of Cu/Al IMC during annealing are recorded in real time. Results show that the isolated Cu/Al IMC is distributed in the bonding interface before annealing. The main component of IMC is Cu9Al4, whereas the minor one of IMC is CuAl2. After annealing at 50-220 ℃ for 24 h, Cu/Al IMC near the Cu layer is Cu9Al4, while Cu-Al IMC apart from the Cu layer is CuAl2. Meanwhile, the reaction rates and the activation energy of Cu/Al IMC at different temperatures are calculated. Furthermore, the more accurate growth equation of Cu/Al IMC is also proposed based on the in-situ experimental results, which will benefit the optimization of bonding process and the reliability of Cu/Al wire bonding.
      通信作者: 孙立涛, slt@seu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2011CB707601)和国家自然科学基金(批准号: 51420105003, 113279028)资助的课题.
      Corresponding author: Sun Li-Tao, slt@seu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB707601), and the National Natural Science Foundation of China (Grant Nos. 51420105003, 113279028).
    [1]

    Khoury S L, Burkhard D J, Galloway D P, Scharr T A 1990 IEEE Electronic Components and Technology Conference Las Vegas, USA, May 20-23, 1990 p768

    [2]

    Mori S, Yoshida H, Uchiyama N 1988 Proceedings of the 38th IEEE Electronics Components Conference Los Angeles, USA, May 9-11, 1988 p539

    [3]

    Liu Y-L, Gui L-J, Jin S 2012 Chin. Phys. B21 096102

    [4]

    Hang C J 2008 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [杭春进 2008 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [5]

    Nguyen L T, McDonald D, Danker A R, Ng P 1995 IEEE Trans. Compon. Packag. Manuf. Technol. A 18 423

    [6]

    Funamizu Y, Watanabe K 1971 Trans. Jpn. Inst. Met. 12 147

    [7]

    Kim H J, Lee J Y, Paik K W, Koh K W, Won J, Choe S, Lee J, Moon J T, Park Y J 2003 IEEE Trans. Compon. Packag. Technol. 26 367

    [8]

    Murali S, Srikanth N, Vath C J 2003 Mater. Res. Bull. 38 637

    [9]

    Murali S, Srikanth N, Charles J V III 2004 Mater. Lett. 58 3096

    [10]

    Ellis T W, Levine L, Wicen R, Ainouz L 2000 Proceedings of Semicon Conference Singapore, Singapore, May 8-11 p44

    [11]

    Lu Y H, Wang Y W, Appelt B K, Lai Y S, Kao C R 2011 IEEE 61 st Electronic Components and Technology Conference (ECTC) Lake Buena Vista, USA, May 31-June 3, 2011 p1481

    [12]

    Drozdov M, Gur G, Atzmon Z, Kaplan W D 2008 J. Mater. Sci. 243 6029

    [13]

    Tan Y Y, Yong F K 2010 IEEE 17th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore, Singapore, July 5-9, 2010 p1

    [14]

    Lee C C, Higgins L M 2010 Proceedings of IEEE 60th Electronic Components and Technology Conference (ECTC) Las Vegas, USA, June 1-4, 2010 p342

    [15]

    Chen J, Lai Y S, Wang Y W, Kao C R 2011 Microelectron. Reliab. 51 125

    [16]

    Zhang B, Wang T, Cong Y, Zhao M, Fan X, Wang J 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP) Xi'an, China, August 16-19, 2010 p213

    [17]

    Xu H, Liu C, Vadim V, Silberschmidt V V, Chen Z 2010 J. Electron. Mater 39 124

    [18]

    Boettcher T, Rother M, Liedtke S, Ullrich M, Bollmann M, Pinkernelle A, Gruber D, Funke H J, Kaiser M, Kan L, Li M, Leung K, Li T, Farrugia M L, O'Halloran O, Petzold M, Ma Z B, Klengel R 2011 12th Electronics Packaging Technology Conference (EPTC) Singapore, Singapore, December 8-10, 2011 p585

  • [1]

    Khoury S L, Burkhard D J, Galloway D P, Scharr T A 1990 IEEE Electronic Components and Technology Conference Las Vegas, USA, May 20-23, 1990 p768

    [2]

    Mori S, Yoshida H, Uchiyama N 1988 Proceedings of the 38th IEEE Electronics Components Conference Los Angeles, USA, May 9-11, 1988 p539

    [3]

    Liu Y-L, Gui L-J, Jin S 2012 Chin. Phys. B21 096102

    [4]

    Hang C J 2008 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [杭春进 2008 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [5]

    Nguyen L T, McDonald D, Danker A R, Ng P 1995 IEEE Trans. Compon. Packag. Manuf. Technol. A 18 423

    [6]

    Funamizu Y, Watanabe K 1971 Trans. Jpn. Inst. Met. 12 147

    [7]

    Kim H J, Lee J Y, Paik K W, Koh K W, Won J, Choe S, Lee J, Moon J T, Park Y J 2003 IEEE Trans. Compon. Packag. Technol. 26 367

    [8]

    Murali S, Srikanth N, Vath C J 2003 Mater. Res. Bull. 38 637

    [9]

    Murali S, Srikanth N, Charles J V III 2004 Mater. Lett. 58 3096

    [10]

    Ellis T W, Levine L, Wicen R, Ainouz L 2000 Proceedings of Semicon Conference Singapore, Singapore, May 8-11 p44

    [11]

    Lu Y H, Wang Y W, Appelt B K, Lai Y S, Kao C R 2011 IEEE 61 st Electronic Components and Technology Conference (ECTC) Lake Buena Vista, USA, May 31-June 3, 2011 p1481

    [12]

    Drozdov M, Gur G, Atzmon Z, Kaplan W D 2008 J. Mater. Sci. 243 6029

    [13]

    Tan Y Y, Yong F K 2010 IEEE 17th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore, Singapore, July 5-9, 2010 p1

    [14]

    Lee C C, Higgins L M 2010 Proceedings of IEEE 60th Electronic Components and Technology Conference (ECTC) Las Vegas, USA, June 1-4, 2010 p342

    [15]

    Chen J, Lai Y S, Wang Y W, Kao C R 2011 Microelectron. Reliab. 51 125

    [16]

    Zhang B, Wang T, Cong Y, Zhao M, Fan X, Wang J 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP) Xi'an, China, August 16-19, 2010 p213

    [17]

    Xu H, Liu C, Vadim V, Silberschmidt V V, Chen Z 2010 J. Electron. Mater 39 124

    [18]

    Boettcher T, Rother M, Liedtke S, Ullrich M, Bollmann M, Pinkernelle A, Gruber D, Funke H J, Kaiser M, Kan L, Li M, Leung K, Li T, Farrugia M L, O'Halloran O, Petzold M, Ma Z B, Klengel R 2011 12th Electronics Packaging Technology Conference (EPTC) Singapore, Singapore, December 8-10, 2011 p585

  • [1] 李育川, 郝刚领, 王金, 王伟国, 王新福, 汪聃. 烧结过程中Ni-Al金属间化合物形成的内耗. 物理学报, 2021, 70(5): 056102. doi: 10.7498/aps.70.20201422
    [2] 满田囡, 张林, 项兆龙, 王文斌, 高建文, 王恩刚. 添加Ti对Al-Bi难混溶合金组织和性能的影响. 物理学报, 2018, 67(3): 036101. doi: 10.7498/aps.67.20172256
    [3] 沙莎, 王伟丽, 吴宇昊, 魏炳波. 深过冷条件下Co7Mo6金属间化合物的枝晶生长和维氏硬度研究. 物理学报, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [4] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [5] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [6] 曹永泽, 王强, 李国建, 马永会, 隋旭东, 赫冀成. 强磁场对不同厚度Fe-Ni纳米多晶薄膜的生长过程及磁性能的影响. 物理学报, 2015, 64(6): 067502. doi: 10.7498/aps.64.067502
    [7] 赵宁, 钟毅, 黄明亮, 马海涛, 刘小平. 热迁移对Cu/Sn/Cu焊点液-固界面Cu6Sn5生长动力学的影响. 物理学报, 2015, 64(16): 166601. doi: 10.7498/aps.64.166601
    [8] 陈丽群, 于涛, 彭小芳, 刘健. 难熔元素钨在NiAl位错体系中的占位及对键合性质的影响. 物理学报, 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
    [9] 郑晖, 申亮, 白彬, 孙博. NiAl化合物表面成分的准标度关系与偏离放大效应. 物理学报, 2012, 61(1): 016104. doi: 10.7498/aps.61.016104
    [10] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [11] 韩 逸, 班春燕, 巴启先, 王书晗, 崔建忠. 磁场对液态铝和固态铁界面微观组织的影响. 物理学报, 2005, 54(6): 2955-2960. doi: 10.7498/aps.54.2955
    [12] 许北雪, 吴锦雷, 侯士敏, 张西尧, 刘惟敏, 薛增泉, 吴全德. 镧与真空沉积银纳米粒子的金属间化合. 物理学报, 2002, 51(7): 1649-1653. doi: 10.7498/aps.51.1649
    [13] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [14] 李 雅, 陈玲燕, 张 哲, 吴永刚, 乔 轶, 徐炜新. XPS研究Nd表面氧化物的生长过程. 物理学报, 2001, 50(1): 79-82. doi: 10.7498/aps.50.79
    [15] 李 文, 陈岱民, 关振中, 张瑞林. Ti-Al系金属间化合物力学性能的电子理论. 物理学报, 1998, 47(12): 2064-2073. doi: 10.7498/aps.47.2064
    [16] 李贻杰, 熊光成, 甘子钊, 任琮欣, 邹世昌. Ar离子注入YBa2Cu3O7-x超导薄膜中微结构变化的透射电子显微镜研究. 物理学报, 1993, 42(3): 482-487. doi: 10.7498/aps.42.482
    [17] 徐建华. Al3Y化合物的晶体结构与电子结构. 物理学报, 1990, 39(2): 278-281. doi: 10.7498/aps.39.278
    [18] 赵建国, 李方华, 陈维, 解思深, 曹宁, 郑家祺. Nd-Ba-Cu-O高温超导体的高分辨电子显微术研究. 物理学报, 1989, 38(3): 508-510. doi: 10.7498/aps.38.508
    [19] 王德宁, 王渭源. 化合物半导体中离子射程参数与化学键中离子特性间关系研究. 物理学报, 1989, 38(6): 923-930. doi: 10.7498/aps.38.923
    [20] 郭永翔, 黑祖昆, 吴玉琨, 郭可信. Ni-Zr非晶合金晶化的透射电子显微镜研究(Ⅰ) ——Ni67Zr33晶化过程中的亚稳相. 物理学报, 1986, 35(3): 359-364. doi: 10.7498/aps.35.359
计量
  • 文章访问数:  5612
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-30
  • 修回日期:  2015-06-24
  • 刊出日期:  2015-11-05

/

返回文章
返回