搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于质心迭代估计的无线传感器网络节点定位算法

蒋锐 杨震

引用本文:
Citation:

基于质心迭代估计的无线传感器网络节点定位算法

蒋锐, 杨震

An improved centroid localization algorithm based on iterative computation for wireless sensor network

Jiang Rui, Yang Zhen
PDF
导出引用
  • 针对无线传感器网络非测距定位方法的应用, 提出了基于质心迭代估计的节点定位算法. 该算法首先计算当前连通信标节点所围成的平面质心的坐标及其与未知节点间的接收信号强度, 然后用计算所得质心节点替代距离未知节点最远的连通信标节点, 缩小连通信标节点所围成的平面, 并通过多次迭代的方法提高节点定位精度. 仿真实验结果表明, 该算法的各项指标均为良好, 适用于无线传感器网络的节点定位.
    Wireless sensor network (WSN) is a basic component of internet and it plays an important role in many application areas, such as military surveillance, environmental monitoring and medical treatment. Node localization is one of the interesting issues in the field of WSN. Now, most of the existing node localization algorithms can be divided into two categories. One is range-based measurement and the other is range-free measurement. The localization algorithm of range-based measurement can achieve better location accuracy than the localization algorithm of range-free measurement. However, they are generally very energy consuming. Therefore, the range-free measurements are most widely used in practical applications. According to the application of localization algorithm in WSN by range-free measurements, an improved centroid localization algorithm based on iterative computation for wireless sensor network is proposed. In this algorithm, the position relationship of the closed area surrounded by the anchor nodes inside the unknown node's communication range and the unknown node is obtained by approximate point-in-triangulation test at first. Different position relationships determine different stopping criteria for iteration. Then, the centroid coordinates of the closed area surrounded by the anchor nodes inside the unknown node's communication range and the received signal strength (RSSI) between the centroid node and the unknown node are calculated. The anchor node with the weakest RSSI would be replaced by the centroid node. By this method, the closed area surrounded by the anchor nodes inside the unknown node's communication range is reduced. The location accuracy is increased by the cyclic iterative method. With the change of the anchor node ratio, the communication radius of the unknown node and the effect of RSSI error, the algorithm performance is investigated by using simulated data. The simulation results validate that although the improved centroid localization algorithm performance will be lost when the number of the anchor nodes inside the unknown node communication range decreases, the new approach can achieve good performance under the condition of few anchor nodes inside the unknown node communication range and this method is of strong robusticity against RSSI error disturbance.
      通信作者: 蒋锐, j_ray@njupt.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB302903)、江苏省高校自然科学研究重大项目(批准号: 14KJA510003)、中国博士后科学基金(批准号: 2014M551631)、江苏省博士后基金(批准号: 1302088B)和南京邮电大学科研基金(批准号: NY213009, NY214042)资助的课题.
      Corresponding author: Jiang Rui, j_ray@njupt.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB302903), the Key Project supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 14KJA510003), the China Postdoctoral Science Foundation (Grant No. 2014M551631), Project supported by the Jiangsu Postdoctoral Sustentation Fund, China (Grant No. 1302088B) and the NUPTSF (Grant Nos. NY213009, NY214042).
    [1]

    Liu W R, He Y 2013 EPC System Network and Wireless Sensor Networks (Beijing: Publishing House of Electronics Industry) p141 (in Chinese) [刘伟荣, 何云 2013 物联网与无线传感器(北京: 电子工业出版社) 第141页]

    [2]

    Peng H X, Zhao H, Li D Z, Lin C 2014 Acta Phys. Sin. 63 090206 (in Chinese) [彭海霞, 赵海, 李大舟, 林川 2014 物理学报 63 090206]

    [3]

    Zhang C, Fei S M, Zhou X P 2012 Chin. Phys. B 21 120101

    [4]

    Yaghoubi F, Abbasfar A A, Maham B 2014 IEEE Commun. Lett. 18 973

    [5]

    Sahu P K, Wu E H K, Sahoo J 2013 IEEE Sens. J. 13 3115

    [6]

    Yu K, Guo Y J, Hedley M 2009 IET Signal Process. 3 106

    [7]

    Xu E, Ding Z, Dasgupta S 2011 IEEE Trans. Signal Process. 59 2887

    [8]

    Bandiera F, Coluccia A, Ricci G, Ricciato F, Spano D 2014 12th IEEE International Conference on Embedded and Ubiquitous Computing (EUC) Milano, Italy, August 26-28, 2014 p193

    [9]

    Sun D Y, Qian Z H, Han M F, Wang X 2014 Acta Electron. Sin. 42 1601 (in Chinese) [孙大洋, 钱志鸿, 韩梦飞, 王雪 2014 电子学报 42 1601]

    [10]

    Tomic S, Beko M, Dinis R 2015 IEEE Trans. Vehicular Technol. 64 2037

    [11]

    Hao X C, Liu W J, Xin M J, Yao N, Ru X Y 2015 Acta Phys. Sin. 64 080101 (in Chinese) [郝晓辰, 刘伟静, 辛敏洁, 姚宁, 汝小月 2015 物理学报 64 080101]

    [12]

    Liu H R, Yin W X, Han T, Dong M R 2014 Acta Phys. Sin. 63 040509 (in Chinese) [刘浩然, 尹文晓, 韩涛, 董明如 2014 物理学报 63 040509]

    [13]

    Bulusu N, Heidemann J, Estrin D 2000 IEEE Personal Commun. 7 28

    [14]

    Zhou Y, Ao X, Xia S X 2008 7th World Congress on Intelligent Contral and Automation (WCICA) Chongqing, China, May 25-27, 2008 p193

    [15]

    Yu F, Wang Q, Zhang X T, Li C 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM) Dalian, China, October 13-21, 2008 p1

    [16]

    Wang J Z, Jin H X 2009 International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC) Wuhan, China, April 25-26, 2009 p719

    [17]

    Hadir A, Zine D K, Bakhouya M, Ei K J 2014 5th Workshop on Code, Cryptography and Communication Systems (WCCCS) EI-Jadida, Morocco, November 27-28, 2014 p25

    [18]

    Xiang J. Tan W W 2013 IEEE International Workshop on Electromagnetics (iWEM) Hong Kong, China, August 1-3, 2013 p171

    [19]

    Doherty L, Pister K S J, Ei G L 2001 2001 Proc of Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies Alaska, USA, April 22-26, 2001 p1655

    [20]

    Meng Y H, Wen Y Y, Chen J, Zhao H 2014 Acta Electron. Sin. 42 1712 (in Chinese) [孟颍辉, 闻英友, 陈剑, 赵宏 2014 电子学报 42 1712]

    [21]

    Maddumabandara A, Leung H, Liu M X 2015 IEEE Sensors J. 15 5228

  • [1]

    Liu W R, He Y 2013 EPC System Network and Wireless Sensor Networks (Beijing: Publishing House of Electronics Industry) p141 (in Chinese) [刘伟荣, 何云 2013 物联网与无线传感器(北京: 电子工业出版社) 第141页]

    [2]

    Peng H X, Zhao H, Li D Z, Lin C 2014 Acta Phys. Sin. 63 090206 (in Chinese) [彭海霞, 赵海, 李大舟, 林川 2014 物理学报 63 090206]

    [3]

    Zhang C, Fei S M, Zhou X P 2012 Chin. Phys. B 21 120101

    [4]

    Yaghoubi F, Abbasfar A A, Maham B 2014 IEEE Commun. Lett. 18 973

    [5]

    Sahu P K, Wu E H K, Sahoo J 2013 IEEE Sens. J. 13 3115

    [6]

    Yu K, Guo Y J, Hedley M 2009 IET Signal Process. 3 106

    [7]

    Xu E, Ding Z, Dasgupta S 2011 IEEE Trans. Signal Process. 59 2887

    [8]

    Bandiera F, Coluccia A, Ricci G, Ricciato F, Spano D 2014 12th IEEE International Conference on Embedded and Ubiquitous Computing (EUC) Milano, Italy, August 26-28, 2014 p193

    [9]

    Sun D Y, Qian Z H, Han M F, Wang X 2014 Acta Electron. Sin. 42 1601 (in Chinese) [孙大洋, 钱志鸿, 韩梦飞, 王雪 2014 电子学报 42 1601]

    [10]

    Tomic S, Beko M, Dinis R 2015 IEEE Trans. Vehicular Technol. 64 2037

    [11]

    Hao X C, Liu W J, Xin M J, Yao N, Ru X Y 2015 Acta Phys. Sin. 64 080101 (in Chinese) [郝晓辰, 刘伟静, 辛敏洁, 姚宁, 汝小月 2015 物理学报 64 080101]

    [12]

    Liu H R, Yin W X, Han T, Dong M R 2014 Acta Phys. Sin. 63 040509 (in Chinese) [刘浩然, 尹文晓, 韩涛, 董明如 2014 物理学报 63 040509]

    [13]

    Bulusu N, Heidemann J, Estrin D 2000 IEEE Personal Commun. 7 28

    [14]

    Zhou Y, Ao X, Xia S X 2008 7th World Congress on Intelligent Contral and Automation (WCICA) Chongqing, China, May 25-27, 2008 p193

    [15]

    Yu F, Wang Q, Zhang X T, Li C 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM) Dalian, China, October 13-21, 2008 p1

    [16]

    Wang J Z, Jin H X 2009 International Conference on Networks Security, Wireless Communications and Trusted Computing (NSWCTC) Wuhan, China, April 25-26, 2009 p719

    [17]

    Hadir A, Zine D K, Bakhouya M, Ei K J 2014 5th Workshop on Code, Cryptography and Communication Systems (WCCCS) EI-Jadida, Morocco, November 27-28, 2014 p25

    [18]

    Xiang J. Tan W W 2013 IEEE International Workshop on Electromagnetics (iWEM) Hong Kong, China, August 1-3, 2013 p171

    [19]

    Doherty L, Pister K S J, Ei G L 2001 2001 Proc of Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies Alaska, USA, April 22-26, 2001 p1655

    [20]

    Meng Y H, Wen Y Y, Chen J, Zhao H 2014 Acta Electron. Sin. 42 1712 (in Chinese) [孟颍辉, 闻英友, 陈剑, 赵宏 2014 电子学报 42 1712]

    [21]

    Maddumabandara A, Leung H, Liu M X 2015 IEEE Sensors J. 15 5228

  • [1] 罗小元, 李昊, 马巨海. 基于最小刚性图代数特性的无线网络拓扑优化算法. 物理学报, 2016, 65(24): 240201. doi: 10.7498/aps.65.240201
    [2] 李小龙, 冯东磊, 彭鹏程. 一种基于势博弈的无线传感器网络拓扑控制算法. 物理学报, 2016, 65(2): 028401. doi: 10.7498/aps.65.028401
    [3] 郝晓辰, 刘伟静, 辛敏洁, 姚宁, 汝小月. 一种无线传感器网络健壮性可调的能量均衡拓扑控制算法. 物理学报, 2015, 64(8): 080101. doi: 10.7498/aps.64.080101
    [4] 郝晓辰, 姚宁, 汝小月, 刘伟静, 辛敏洁. 基于生命期模型的无线传感器网络信道分配博弈算法. 物理学报, 2015, 64(14): 140101. doi: 10.7498/aps.64.140101
    [5] 彭海霞, 赵海, 李大舟, 林川. 基于动态最小生成树路由协议的数据聚融算法. 物理学报, 2014, 63(9): 090206. doi: 10.7498/aps.63.090206
    [6] 刘浩然, 尹文晓, 董明如, 刘彬. 一种强容侵能力的无线传感器网络无标度拓扑模型研究. 物理学报, 2014, 63(9): 090503. doi: 10.7498/aps.63.090503
    [7] 方伟, 宋鑫宏. 基于Voronoi图盲区的无线传感器网络覆盖控制部署策略. 物理学报, 2014, 63(22): 220701. doi: 10.7498/aps.63.220701
    [8] 刘洲洲, 王福豹. 一种能耗均衡的无线传感器网络加权无标度拓扑研究. 物理学报, 2014, 63(19): 190504. doi: 10.7498/aps.63.190504
    [9] 刘彬, 董明如, 刘浩然, 尹荣荣, 韩丽. 基于综合故障的无线传感器网络无标度容错拓扑模型研究. 物理学报, 2014, 63(17): 170506. doi: 10.7498/aps.63.170506
    [10] 韩丽, 刘彬, 李雅倩, 赵磊静. 能量异构的无线传感器网络加权无标度拓扑研究. 物理学报, 2014, 63(15): 150504. doi: 10.7498/aps.63.150504
    [11] 尹荣荣, 刘彬, 刘浩然, 李雅倩. 无线传感器网络中无标度拓扑的动态容错性分析. 物理学报, 2014, 63(11): 110205. doi: 10.7498/aps.63.110205
    [12] 刘浩然, 尹文晓, 韩涛, 董明如. 一种优化无线传感器网络生命周期的容错拓扑研究. 物理学报, 2014, 63(4): 040509. doi: 10.7498/aps.63.040509
    [13] 黄锦旺, 冯久超, 吕善翔. 混沌信号在无线传感器网络中的盲分离. 物理学报, 2014, 63(5): 050502. doi: 10.7498/aps.63.050502
    [14] 宋佳, 罗清华, 彭喜元. 基于节点健康度的无线传感器网络冗余通路控制方法. 物理学报, 2014, 63(12): 128401. doi: 10.7498/aps.63.128401
    [15] 祁浩, 王福豹, 邓宏. 基于无线传感器网络的地震信号特征提取方法研究. 物理学报, 2013, 62(10): 104301. doi: 10.7498/aps.62.104301
    [16] 刘向丽, 李赞, 胡易俗. 无线传感网中基于质心的高效坐标压缩算法. 物理学报, 2013, 62(7): 070201. doi: 10.7498/aps.62.070201
    [17] 王亚奇, 杨晓元. 一种无线传感器网络簇间拓扑演化模型及其免疫研究. 物理学报, 2012, 61(9): 090202. doi: 10.7498/aps.61.090202
    [18] 佟晓筠, 左科, 王翥. 基于无线传感器网络的混合混沌新分组加密算法. 物理学报, 2012, 61(3): 030502. doi: 10.7498/aps.61.030502
    [19] 王翥, 王祁, 魏德宝, 王玲. 无线传感器网络中继节点布居算法的研究. 物理学报, 2012, 61(12): 120505. doi: 10.7498/aps.61.120505
    [20] 周杰, 刘元安, 吴帆, 张洪光, 俎云霄. 基于混沌并行遗传算法的多目标无线传感器网络跨层资源分配. 物理学报, 2011, 60(9): 090504. doi: 10.7498/aps.60.090504
计量
  • 文章访问数:  4116
  • PDF下载量:  463
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-09
  • 修回日期:  2015-11-24
  • 刊出日期:  2016-02-05

基于质心迭代估计的无线传感器网络节点定位算法

  • 1. 南京邮电大学通信与信息工程学院, 南京 210003
  • 通信作者: 蒋锐, j_ray@njupt.edu.cn
    基金项目: 国家重点基础研究发展计划(批准号: 2011CB302903)、江苏省高校自然科学研究重大项目(批准号: 14KJA510003)、中国博士后科学基金(批准号: 2014M551631)、江苏省博士后基金(批准号: 1302088B)和南京邮电大学科研基金(批准号: NY213009, NY214042)资助的课题.

摘要: 针对无线传感器网络非测距定位方法的应用, 提出了基于质心迭代估计的节点定位算法. 该算法首先计算当前连通信标节点所围成的平面质心的坐标及其与未知节点间的接收信号强度, 然后用计算所得质心节点替代距离未知节点最远的连通信标节点, 缩小连通信标节点所围成的平面, 并通过多次迭代的方法提高节点定位精度. 仿真实验结果表明, 该算法的各项指标均为良好, 适用于无线传感器网络的节点定位.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回