搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属纳米薄膜在石墨基底表面的动力学演化

李艳茹 何秋香 王芳 向浪 钟建新 孟利军

引用本文:
Citation:

金属纳米薄膜在石墨基底表面的动力学演化

李艳茹, 何秋香, 王芳, 向浪, 钟建新, 孟利军

Dynamical evolution study of metal nanofilms on graphite substrates

Li Yan-Ru, He Qiu-Xiang, Wang Fang, Xiang Lang, Zhong Jian-Xin, Meng Li-Jun
PDF
导出引用
  • 采用分子动力学方法研究了金属Au和Pt纳米薄膜在石墨(烯)基底表面的动力学演化过程, 探讨了金属薄膜和石墨(烯)基底间的相互作用对金属纳米薄膜在固态基底表面的去湿以及脱附的动力学演化的影响. 研究结果表明, 在高温下, 相同层数的Au和Pt纳米薄膜在单层石墨基底表面上存在不同的去湿现象, 主要表现为厚度较小的Pt纳米薄膜在去湿过程中有纳米空洞形成, 而同样厚度的Au薄膜在去湿过程中没有形成空洞. Au和Pt两种金属薄膜在高温下都去湿形成纳米液滴, 这些液滴最终都以一定的速度脱离基底. 在模拟的薄膜厚度范围内(0.22.3 nm), Au和Pt纳米液滴脱离基底的速度随厚度增加表现出不同的变化规律. Pt纳米液滴的脱离速度随薄膜初始厚度的增加先增加后减少, 而Au脱离速度随厚度的增加先减少, 达到一个临界厚度后脱离速度突然迅速增加. 利用薄膜与基底间相互作用的不同导致去湿过程中的黏滞耗散不同, 定性分析了这种变化规律的原因. 此外, 进一步研究还发现金属液滴的脱离时间与薄膜厚度和模拟温度的依赖关系, 发现脱离时间随薄膜厚度的增加而增加, 随模拟温度的升高而减小. 这些研究结果可以为金属镀膜、浮选、表面清洁、器件表面去湿等工业生产过程提供理论指导.
    The dynamical evolution process of nanoscaled film on a solid substrate depends on many factors, such as the properties of thin film, the characteristics of the substrate, and the external environment. It is essential to elucidate the influences of these factors for our understanding self-organized growth of nanoparticles and the dewetting/detachment mechanism of nanofilm on a solid substrate. In the present paper, we investigate the dynamical dewetting/detachment of metal Au and Pt nanofilm on a graphene/graphite substrate at high temperature by using the molecular dynamics simulation technique. We discuss the influences of metal-substrate interaction, temperature and thickness of film on the dewetting dynamics. Our results reveal that the Au and Pt nanofilms with the same initial thickness on graphene substrates manifest different dewetting dynamical processes at high temperatures. Some nanoscale holes are formed randomly during the dewetting of Pt nanofilm with a thickness of less than 0.6 nm because of the strong interaction between the Pt films and substrate. In contrast, no hole is observed and a nanodroplet is formed directly by high temperature dewetting for Au nanofilm with the same initial thickness as that of Pt nanofilm. The resulting Au and Pt nanodroplets move in the vertical direction due to the surface tension and the constraint of the solid substrate. A high-temperature nanodroplet will be detached from the graphene substrate surface at a constant speed. Interestingly, the values of detachment velocity (vd) of nanodroplets show different dependences on initial thickness for Au and Pt nanofilm, respectively. In a thickness range of 0.2-2.3 nm, the vd of Pt nanodroplet increases and then decreases as the thickness of nanofilm increases. However, the vd of Au nanodroplet decreases gradually and then increases steeply as the Au nanofilm turns thicker. The different thickness dependences of vd for Au and Pt nanofilms are analyzed qualitatively by considering different metal-substrate viscous dissipations. In addition, the detachment time (td) of a dewetting metal film is also related to the temperature and the thickness of substrate. Our results demonstrate that the td decreases monotonically with the decrease of film thickness and the raise of temperature. These results provide a theoretical guideline for industrial production processes, such as metal coating, flotation, and the surface cleaning.
      通信作者: 孟利军, ljmeng@xtu.edu.cn
    • 基金项目: 国家自然科学基金青年基金 (批准号: 11204261, 11204260)和长江学者和创新团队发展计划(批准号: IRT13093)资助的课题.
      Corresponding author: Meng Li-Jun, ljmeng@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204261, 11204260), and the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13093).
    [1]

    Li H, Zeng X C 2012 ACS Nano 6 2401

    [2]

    Severin N, Lange P, Sokolov I M 2012 Nano Lett. 12 774

    [3]

    Galashev A Y, Rakhmanova O R 2015 Chin. Phys. B 24 020701

    [4]

    Habenicht A, Olapinski M, Burmeister F 2005 Science 309 2043

    [5]

    Afsar-Siddiqui A B, Luckham P F, Matar O K 2003 Adv. Colloid Interf. 106 183

    [6]

    Afkhami S, Kondic L 2013 Phys. Rev. Lett. 111 034501

    [7]

    Roy S, Mukherjee R 2012 ACS Appl. Mater. Interf. 4 5375

    [8]

    Liu C Q, Chen C Z, Qiu S, Wu Y D, Li P, Yu C Y 2008 Funct. Mater. 39 1853 (in Chinese) [刘翠青, 陈城钊, 邱胜, 吴燕丹, 李平, 余楚迎 2008 功能材料 39 1853]

    [9]

    Rack P D, Guan Y, Fowlkes J D 2008 Appl. Phys. Lett. 92 223108

    [10]

    Wu Y, Fowlkes J D, Rack P D 2010 Langmuir 26 11972

    [11]

    Jin R, Cao Y C, Hao E 2003 Nature 425 487

    [12]

    Wu X, Zhao H, Zhong M 2014 Carbon 66 31

    [13]

    Yuan Q, Zhao Y P 2013 J. Fluid Mech. 716 171

    [14]

    Li X, He Y, Wang Y 2014 Sci. Rep. 4 3938

    [15]

    Nguyen T D, Fuentes-Cabrera M, Fowlkes J D 2012 Langmuir 28 13960

    [16]

    Fuentes-Cabrera M, Rhodes B H, Baskes M I 2011 ACS Nano 5 7130

    [17]

    Sankaranarayanan S K R S, Bhethanabotla V R, Joseph B 2005 Phys. Rev. B 72 195405

    [18]

    Arcidiacono S, Walther J H, Poulikakos D 2005 Phy. Rev. Lett. 94 105502

    [19]

    Li Y, Tang C, Zhong J, et al. 2015 J. Appl. Phys. 117 064304

    [20]

    Fuentes-Cabrera M, Rhodes B H, Fowlkes J D 2011 Phys. Rev. E 83 041603

    [21]

    Wei Q, E W J 2012 Acta Phys. Sin. 61 160508 (in Chinese) [魏琪, 鄂文汲 2012 物理学报 61 160508]

  • [1]

    Li H, Zeng X C 2012 ACS Nano 6 2401

    [2]

    Severin N, Lange P, Sokolov I M 2012 Nano Lett. 12 774

    [3]

    Galashev A Y, Rakhmanova O R 2015 Chin. Phys. B 24 020701

    [4]

    Habenicht A, Olapinski M, Burmeister F 2005 Science 309 2043

    [5]

    Afsar-Siddiqui A B, Luckham P F, Matar O K 2003 Adv. Colloid Interf. 106 183

    [6]

    Afkhami S, Kondic L 2013 Phys. Rev. Lett. 111 034501

    [7]

    Roy S, Mukherjee R 2012 ACS Appl. Mater. Interf. 4 5375

    [8]

    Liu C Q, Chen C Z, Qiu S, Wu Y D, Li P, Yu C Y 2008 Funct. Mater. 39 1853 (in Chinese) [刘翠青, 陈城钊, 邱胜, 吴燕丹, 李平, 余楚迎 2008 功能材料 39 1853]

    [9]

    Rack P D, Guan Y, Fowlkes J D 2008 Appl. Phys. Lett. 92 223108

    [10]

    Wu Y, Fowlkes J D, Rack P D 2010 Langmuir 26 11972

    [11]

    Jin R, Cao Y C, Hao E 2003 Nature 425 487

    [12]

    Wu X, Zhao H, Zhong M 2014 Carbon 66 31

    [13]

    Yuan Q, Zhao Y P 2013 J. Fluid Mech. 716 171

    [14]

    Li X, He Y, Wang Y 2014 Sci. Rep. 4 3938

    [15]

    Nguyen T D, Fuentes-Cabrera M, Fowlkes J D 2012 Langmuir 28 13960

    [16]

    Fuentes-Cabrera M, Rhodes B H, Baskes M I 2011 ACS Nano 5 7130

    [17]

    Sankaranarayanan S K R S, Bhethanabotla V R, Joseph B 2005 Phys. Rev. B 72 195405

    [18]

    Arcidiacono S, Walther J H, Poulikakos D 2005 Phy. Rev. Lett. 94 105502

    [19]

    Li Y, Tang C, Zhong J, et al. 2015 J. Appl. Phys. 117 064304

    [20]

    Fuentes-Cabrera M, Rhodes B H, Fowlkes J D 2011 Phys. Rev. E 83 041603

    [21]

    Wei Q, E W J 2012 Acta Phys. Sin. 61 160508 (in Chinese) [魏琪, 鄂文汲 2012 物理学报 61 160508]

  • [1] 韦国翠, 田泽安. 不同尺寸Cu64Zr36纳米液滴的快速凝固过程分子动力学模拟. 物理学报, 2021, 70(24): 246401. doi: 10.7498/aps.70.20211235
    [2] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [3] 司丽娜, 王晓力. 纳米沟槽表面黏着接触过程的分子动力学模拟研究. 物理学报, 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [4] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [5] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究. 物理学报, 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [6] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [7] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [8] 陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉. 不同基底的GaN纳米薄膜制备及其场发射增强研究. 物理学报, 2013, 62(17): 177701. doi: 10.7498/aps.62.177701
    [9] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [10] 徐爽, 郭雅芳. 纳米铜薄膜塑性变形中空位型缺陷形核与演化的分子动力学研究. 物理学报, 2013, 62(19): 196201. doi: 10.7498/aps.62.196201
    [11] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究. 物理学报, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [12] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究. 物理学报, 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [13] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟. 物理学报, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [14] 张 杨, 张建华, 文玉华, 朱梓忠. 含圆孔纳米薄膜在拉伸加载下变形机理的原子级模拟研究. 物理学报, 2008, 57(11): 7094-7099. doi: 10.7498/aps.57.7094
    [15] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [16] 何丽静, 林晓娉, 王铁宝, 刘春阳. 单晶Si表面离子束溅射沉积Co纳米薄膜的研究. 物理学报, 2007, 56(12): 7158-7164. doi: 10.7498/aps.56.7158
    [17] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [18] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [19] 徐 洲, 王秀喜, 梁海弋, 吴恒安. 纳米单晶与多晶铜薄膜力学行为的数值模拟研究. 物理学报, 2004, 53(11): 3637-3643. doi: 10.7498/aps.53.3637
    [20] 许素娟, 门守强, 王 彪, 陆坤权. TiO2包覆石墨颗粒/硅油电流变液的研究. 物理学报, 2000, 49(11): 2176-2179. doi: 10.7498/aps.49.2176
计量
  • 文章访问数:  5213
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-19
  • 修回日期:  2015-10-26
  • 刊出日期:  2016-02-05

/

返回文章
返回