搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷却速率对温敏聚N-异丙基丙烯酰胺胶体结晶过程的影响

王理林 王志军 林鑫 王锦程 黄卫东

引用本文:
Citation:

冷却速率对温敏聚N-异丙基丙烯酰胺胶体结晶过程的影响

王理林, 王志军, 林鑫, 王锦程, 黄卫东

Effect of cooling rate on crystallization process of thermo-sensitive poly-N-isopropylacrylamide colloid

Wang Li-Lin, Wang Zhi-Jun, Lin Xin, Wang Jin-Cheng, Huang Wei-Dong
PDF
导出引用
  • 冷却速率对结晶过程具有重要的影响. 本文采用温敏poly-N-isopropylacrylamide (PNIPAM) 胶体晶体体系实时观察了冷却速率对结晶晶粒尺寸的影响. 通过高倍透射明场观察和Bragg衍射观察研究连续冷却下的晶粒形核和生长实时演化过程, 发现随着冷却速率的增加, PNIPAM胶体晶体晶粒尺寸不断减少. 晶粒尺寸与冷却速率符合幂指数关系, 与金属体系具有相似的演化规律.
    Grain size has a significant influence on the performances of materials. Cooling rate is a key process parameter for controlling the size of crystal grain. Real-time observations of crystallization process on an atomic scale under different cooling rates are helpful for an in-depth understanding of this scientific issue. However, it is very difficult to observe directly the crystallization process on an atomic scale because it is small in size and fast in motion. Over last decades, colloidal suspension has attracted many researches attention as a model system of condensed matter to investigate phase transition kinetics at a particle scale level because colloidal particles are micrometer-sized and their thermal motions can be directly visualized and measured with an optical microscope. Thermo-sensitive poly-N-isopropylacrylamide (PNIPAM) colloidal suspension is one of the model systems and its phase transition can be easily controlled by temperature. In this paper, the PNIPAM colloidal system is used to make the real-time observation of the influence of the cooling rate on crystal grain size. Firstly, the crystal nucleation and growth process of PNIPAM colloidal suspension at a cooling rate of 30.0 ℃/h is observed with a high-resolution transmission microscope. It is found that liquid-solid phase transition of the PNIPAM colloidal suspension begins from a sudden transient nucleation, followed by a rapid grain growth as temperature decreases. The variation of crystal phase fraction with temperature undergoes three stages: slow, rapid and slow. In the initial stage, nuclei are limited and the growth driving force is low, therefore the crystal phase fraction changes slowly. In the middle stage, as temperature decreases, the growth driving force further increases and the crystal phase fraction increases rapidly. In the final stage, the crystal grains begin to adjoin with each other and the left liquid volume becomes less and less, so the crystal phase fraction increases in a slow mode again. Secondly, the PNIPAM colloidal crystal under different cooling rates from 0.5 ℃/h to 30.0 ℃/h is observed with Bragg diffraction technique. The grain size of PNIPAM crystal is also measured. It is found that the size of PNIPAM colloidal crystal grain decreases with the increase of cooling rate and the relationship between the grain size and the cooling rate obeys a power-law formula, which is also used to well describe the effect of cooling rate on grain size in metallic system. This suggests that the crystallization behavior of PNIPAM colloidal system under continuous cooling is similar to those of metallic systems. However, the fitted power-law pre-factor of PNIPAM colloidal system is very different from those of the metallic systems because the sizes and motions of PNIPAM particles are much larger and slower than those of atoms, respectively.
      通信作者: 王志军, zhjwang@nwpu.edu.cn;xlin@nwpu.edu.cn ; 林鑫, zhjwang@nwpu.edu.cn;xlin@nwpu.edu.cn
    • 基金项目: 中央高校基本科研业务费(批准号:3102015ZY020)、国家重点基础研究发展计划(批准号:2011CB610402)和国家自然科学基金(批准号:50971102)资助的课题.
      Corresponding author: Wang Zhi-Jun, zhjwang@nwpu.edu.cn;xlin@nwpu.edu.cn ; Lin Xin, zhjwang@nwpu.edu.cn;xlin@nwpu.edu.cn
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities, China (Grant No. 3102015ZY020), the National Basic Research Program of China (Grant No. 2011CB610402), and the National Natural Science Foundation of China (Grant No. 50971102).
    [1]

    Hahn E N, Meyers M A 2015 Mater. Sci. Eng. A 646 101

    [2]

    Lu J, Zeng X Q, Ding W J 2008 Light Met. 8 59 (in Chinese) [路君, 曾小勤, 丁文江 2008 轻金属 8 59]

    [3]

    Zuo Y B, Cui J Z, Zhao Z H, Zhu Q F, Qu F, Wang X J 2008 Chin. J. Rare Met. 32 589 (in Chinese) [左玉波, 崔建忠, 赵志浩, 朱庆丰, 福 屈, 王向杰 2008 稀有金属 32 589]

    [4]

    Liu D, Liu Y, Huang Y, Song R, Chen M 2014 Prog. Nat. Sci. 24 452

    [5]

    Hosseini V A, Shabestari S G, Gholizadeh R 2013 Mater. Design 50 7

    [6]

    Easton M A, StJohn D H 2008 Mater. Sci. Eng. A 486 8

    [7]

    Quested T E, Greer A L 2004 Acta Mater. 52 3859

    [8]

    Zhou L L, Liu R S, Hou Z Y, Tian Z A, Lin Y, Liu Q H 2008 Acta Phys. Sin. 57 3653 (in Chinese) [周丽丽, 刘让苏, 侯兆阳, 田泽安, 林艳, 刘全慧 2008 物理学报 57 3653]

    [9]

    Li G J, Wang Q, Cao Y Z, L X, Li D G, He J C 2011 Acta Phys. Sin. 60 093601 (in Chinese) [李国建, 王强, 曹永泽, 吕逍, 李东刚, 赫冀成 2011 物理学报 60 093601]

    [10]

    Jian Z Y, Li N, Chang F E, Fang W, Zhao Z W, Dong G Z, Jie W Q 2012 Acta Metall. Sin. 48 703 (in Chinese) [坚增运, 李娜, 常芳娥, 方雯, 赵志伟, 董广志, 介万奇 2012 金属学报 48 703]

    [11]

    Yang T, Zhang J, Long J, Long Q H, Chen Z 2014 Chin. Phys. B 23 088109

    [12]

    Granasy L, Tegze G, Toth G I, Pusztai T 2011 Philos. Mag. 91 123

    [13]

    Gasser U, Weeks E R, Schofield A, Pusey P N, Weitz D A 2001 Science 292 258

    [14]

    Franke M, Lederer A, Schope H J 2011 Soft Matter 7 11267

    [15]

    Tan P, Xu N, Xu L 2014 Nat. Phys. 10 73

    [16]

    Han Y L 2013 Physics 42 160 (in Chinese) [韩一龙 2013 物理 42 160]

    [17]

    Liu L, Xu S H, Liu J, Duan L, Sun Z W, Liu R X, Dong P 2006 Acta Phys. Sin. 55 6168 (in Chinese) [刘蕾, 徐升华, 刘捷, 段俐, 孙祉伟, 刘忍肖, 董鹏 2006 物理学报 55 6168]

    [18]

    Xu S H, Zhou H W, Sun Z W, Xie J C 2010 Phys. Rev. E 82 010401

    [19]

    Wu J Z, Zhou B, Hu Z B 2003 Phys. Rev. Lett. 90 048304

    [20]

    Tang S J, Hu Z B, Cheng Z D, Wu J Z 2004 Langmuir 20 8858

    [21]

    Gong T Y, Shen J Y, Hu Z B, Marquez M, Cheng Z D 2007 Langmuir 23 2919

    [22]

    Okubo T, Suzuki D, Shibata K, Tsuchida A 2012 Colloid Polym. Sci. 290 1403

  • [1]

    Hahn E N, Meyers M A 2015 Mater. Sci. Eng. A 646 101

    [2]

    Lu J, Zeng X Q, Ding W J 2008 Light Met. 8 59 (in Chinese) [路君, 曾小勤, 丁文江 2008 轻金属 8 59]

    [3]

    Zuo Y B, Cui J Z, Zhao Z H, Zhu Q F, Qu F, Wang X J 2008 Chin. J. Rare Met. 32 589 (in Chinese) [左玉波, 崔建忠, 赵志浩, 朱庆丰, 福 屈, 王向杰 2008 稀有金属 32 589]

    [4]

    Liu D, Liu Y, Huang Y, Song R, Chen M 2014 Prog. Nat. Sci. 24 452

    [5]

    Hosseini V A, Shabestari S G, Gholizadeh R 2013 Mater. Design 50 7

    [6]

    Easton M A, StJohn D H 2008 Mater. Sci. Eng. A 486 8

    [7]

    Quested T E, Greer A L 2004 Acta Mater. 52 3859

    [8]

    Zhou L L, Liu R S, Hou Z Y, Tian Z A, Lin Y, Liu Q H 2008 Acta Phys. Sin. 57 3653 (in Chinese) [周丽丽, 刘让苏, 侯兆阳, 田泽安, 林艳, 刘全慧 2008 物理学报 57 3653]

    [9]

    Li G J, Wang Q, Cao Y Z, L X, Li D G, He J C 2011 Acta Phys. Sin. 60 093601 (in Chinese) [李国建, 王强, 曹永泽, 吕逍, 李东刚, 赫冀成 2011 物理学报 60 093601]

    [10]

    Jian Z Y, Li N, Chang F E, Fang W, Zhao Z W, Dong G Z, Jie W Q 2012 Acta Metall. Sin. 48 703 (in Chinese) [坚增运, 李娜, 常芳娥, 方雯, 赵志伟, 董广志, 介万奇 2012 金属学报 48 703]

    [11]

    Yang T, Zhang J, Long J, Long Q H, Chen Z 2014 Chin. Phys. B 23 088109

    [12]

    Granasy L, Tegze G, Toth G I, Pusztai T 2011 Philos. Mag. 91 123

    [13]

    Gasser U, Weeks E R, Schofield A, Pusey P N, Weitz D A 2001 Science 292 258

    [14]

    Franke M, Lederer A, Schope H J 2011 Soft Matter 7 11267

    [15]

    Tan P, Xu N, Xu L 2014 Nat. Phys. 10 73

    [16]

    Han Y L 2013 Physics 42 160 (in Chinese) [韩一龙 2013 物理 42 160]

    [17]

    Liu L, Xu S H, Liu J, Duan L, Sun Z W, Liu R X, Dong P 2006 Acta Phys. Sin. 55 6168 (in Chinese) [刘蕾, 徐升华, 刘捷, 段俐, 孙祉伟, 刘忍肖, 董鹏 2006 物理学报 55 6168]

    [18]

    Xu S H, Zhou H W, Sun Z W, Xie J C 2010 Phys. Rev. E 82 010401

    [19]

    Wu J Z, Zhou B, Hu Z B 2003 Phys. Rev. Lett. 90 048304

    [20]

    Tang S J, Hu Z B, Cheng Z D, Wu J Z 2004 Langmuir 20 8858

    [21]

    Gong T Y, Shen J Y, Hu Z B, Marquez M, Cheng Z D 2007 Langmuir 23 2919

    [22]

    Okubo T, Suzuki D, Shibata K, Tsuchida A 2012 Colloid Polym. Sci. 290 1403

  • [1] 戚忠乙, 王博, 江鸿翔, 张丽丽, 何杰. 微量稀土La对Al-7%Si-0.6%Fe合金组织与性能的影响. 物理学报, 2024, 73(7): 076401. doi: 10.7498/aps.73.20231939
    [2] 张伟光, 张凯奋, 夏立东, 黄鑫, 周晓松, 彭述明, 施立群. 氘氚冰籽晶的形核行为. 物理学报, 2022, 71(2): 025203. doi: 10.7498/aps.71.20211018
    [3] 王路, 王菊, 李娜娜, 梁策, 王文丹, 何竹, 刘秀茹. 快速加压引起的硒熔体结晶行. 物理学报, 2021, 70(15): 156201. doi: 10.7498/aps.70.20210253
    [4] 宋岩, 江鸿翔, 赵九洲, 何杰, 张丽丽, 李世欣. Al-Ti-B细化工业纯铝凝固组织演变过程数值模拟. 物理学报, 2021, 70(8): 086402. doi: 10.7498/aps.70.20201431
    [5] 刘心卓, 王华光. 椭球胶体在圆球胶体体系中扩散行为的实验研究. 物理学报, 2020, 69(23): 238201. doi: 10.7498/aps.69.20201301
    [6] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [7] 贝帮坤, 王华光, 张泽新. 有限尺寸胶体体系的二维结晶. 物理学报, 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [8] 满田囡, 张林, 项兆龙, 王文斌, 高建文, 王恩刚. 添加Ti对Al-Bi难混溶合金组织和性能的影响. 物理学报, 2018, 67(3): 036101. doi: 10.7498/aps.67.20172256
    [9] 陈科. 胶体在非晶研究中的应用. 物理学报, 2017, 66(17): 178201. doi: 10.7498/aps.66.178201
    [10] 严大东, 张兴华. 聚合物结晶理论进展. 物理学报, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [11] 马红孺. 胶体排空相互作用理论与计算. 物理学报, 2016, 65(18): 184701. doi: 10.7498/aps.65.184701
    [12] 张天辉, 曹镜声, 梁颖, 刘向阳. 胶体在基础物理研究中的应用. 物理学报, 2016, 65(17): 176401. doi: 10.7498/aps.65.176401
    [13] 张宪刚, 宗亚平, 吴艳. 相场再结晶储能释放模型与显微组织演变的模拟研究. 物理学报, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [14] 陈根余, 吴汉华, 李乐, 常鸿, 唐元广. 电学参数对胶体中工业纯钛微弧氧化膜特性的影响. 物理学报, 2010, 59(3): 1958-1963. doi: 10.7498/aps.59.1958
    [15] 叶祥熙, 明辰, 胡蕴成, 宁西京. 体材料结晶能力的理论预测. 物理学报, 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [16] 黄锋, 邸洪双, 王广山. 用元胞自动机方法模拟镁合金薄带双辊铸轧过程凝固组织. 物理学报, 2009, 58(13): 313-S318. doi: 10.7498/aps.58.313
    [17] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析. 物理学报, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
    [18] 同育全, 申宝成, 甘玉生, 闫志杰. 铸锭凝固组织对相应非晶合金晶化过程中二十面体准晶相形成动力学的影响. 物理学报, 2005, 54(10): 4556-4561. doi: 10.7498/aps.54.4556
    [19] 黄 文, 曾慧中, 张 鹰, 蒋书文, 魏贤华, 李言荣. 不同晶化工艺对非晶PZT纳米薄膜形核取向生长机理的影响. 物理学报, 2005, 54(3): 1334-1340. doi: 10.7498/aps.54.1334
    [20] 张鹏, 杜云慧, 曾大本. 电磁-机械复合场对合金凝固组织影响的研究. 物理学报, 2002, 51(3): 696-699. doi: 10.7498/aps.51.696
计量
  • 文章访问数:  5960
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-10
  • 修回日期:  2016-01-22
  • 刊出日期:  2016-05-05

/

返回文章
返回