搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

160W端面抽运正支混合腔板条激光器的研究

苑佳华 张恒利 毛叶飞 郝相龙 邢冀川 辛建国

引用本文:
Citation:

160W端面抽运正支混合腔板条激光器的研究

苑佳华, 张恒利, 毛叶飞, 郝相龙, 邢冀川, 辛建国

160 W laser-diode end-pumped Nd:YVO4 slab laser with positive branch hybrid resonator

Yuan Jia-Hua, Zhang Heng-Li, Mao Ye-Fei, Hao Xiang-Long, Xing Ji-Chuan, Xin Jian-Guo
PDF
导出引用
  • 研究了LD端面抽运Nd:YVO4板条晶体正支混合腔Innoslab结构的激光器.利用Innoslab激光器的功率升级简单的优点,采用尺寸为22 mm10 mm1 mm的大块Nd:YVO4晶体,最终在抽运功率为462 W时,获得最大功率为160 W的连续激光输出,功率波动为2.6%,光-光转换效率和斜效率分别为41.5%和47.7%.在输出功率为145 W时,测得光束质量在稳腔和非稳腔方向上分别为2.21和1.37.
    In this paper, we present an experiment on a continuous-wave Nd:YVO4 Innoslab laser diode-pumped at 808 nm. The LD stack is composed of six bars, with the central wavelength fixed at 808 nm by adjusting the cooling water temperature. The emission from each diode laser bar is individually collimated by micro lens, which is coupled into a coupling system. The coupling system includes a planar waveguide, four cylindrical lenses and a spherical lens. The planar waveguide is used to shape the emitting beams of LD to obtain uniform distribution. The coupling system leads to a pump power loss of ~12%. By the coupling system, we obtain a homogeneous pumping line of ~0.4 mm22 mm coupled into the 0.3 at. % Nd:YVO4 (22 mm10 mm1 mm) crystal. The Nd:YVO4 crystal is a-cut with c axis along 22 mm direction. Indium foil is used for uniform thermal contact and cooling. The laser crystal is mounted between two water-cooled copper heat sinks with two large faces 22 mm10 mm. The heat conduction inside the laser crystal is quasionedimensional. The two 22 mm1 mm surfaces are polished and antireflectioncoated for the pump light and the laser light. Temperature of LD stack and laser crystal are controlled by cooling circulating water. The resonator consists of the input mirror (M1) and the output mirror (M2). M1 is a concave mirror with a radius of R1=500 mm, which is coated for high refection (HR) at 1064 nm and high transmission (HT) at 808 nm. The output mirror (M2) is a cylindrical mirror with a radius of R2=-350 mm, which is coated for HR at 1064 nm. M2 is cut and polished at one edge where the large beam exits. M1 and M2 constitute a stable resonator in vertical direction and off-axis unstable positive confocal resonator in the horizontal direction. In theory, the length of the resonator is L=(R1+R2)/2=75 mm. In fact, the length of the resonator is the same as the theoretical value. The equivalent transmission of the resonator is T=1-|R2/R1|=30%. At a pumping power of 462 W, a maximum power of 160 W continuous wave laser output is obtained, with the stability being 2.6%. Considering 88% of the coupling efficiency and 95% of absorbed efficiency, the optical-to-optical efficiency and slope efficiency are 41.5% and 47.7%, respectively. When the output power is 145 W, the beam quality M2 factors in the stable direction and unstable direction are 2.21 and 1.37, respectively. With the help of the ANSYS software, the temperature distribution in the crystal at the pumped power of 462 W is demonstrated. The temperature distributions are analogous to exponential decays in the Z-direction and parabola decay in the Y-direction, respectively. The maximum temperature difference is 71.6 K in our experiment. The thermal lens is negligible in the unstable direction because the temperature distribution is uniform. That is why the Innoslab laser is beneficial to the power scaling, as it keeps the power density constant, and enlarges the size of gain medium in the unstable direction to inject bigger power to obtain a higher power output, and maintain the constant beam quality.
      Corresponding author: Zhang Heng-Li, zhl040325@bit.edu.cn
    [1]

    Zhou S H, Zhao H, Tang X J 2009 Chin. J. Lasers 36 1605 (in Chinese) [周寿恒, 赵鸿, 唐小军2009中国激光36 1605]

    [2]

    Minassian A, Thompson B A, Damzen M J 2003 Appl. Phys. B 76 341

    [3]

    Zhang T L, Yao J Q, Wang P, Zhu X Y, Cai Z Q, Zhang B G 2007 Chinese J. Lasers 34 1194 (in Chinese) [张铁犁, 姚建铨, 王鹏, 朱雪玉, 蔡志强, 张百钢2007中国激光34 1194]

    [4]

    Du K M, Wu N L, Xu J D, Giesekus J, Loosen P, Poprawe R 1998 Opt. Lett. 23 370

    [5]

    Poprawe R, Scchulz W 2003 Riken Rev. 50 3

    [6]

    Shi P, Zhang H L, Wang Y J, Robert D, D U K M 2004 Acta Opt. Sin. 24 641 (in Chinese) [石鹏, 张恒利, 汪永东, Robert Diart, 杜可明2004光学学报24 641]

    [7]

    Zhu P, Li D J, Qi B S, Alexander S, Shi P, Claus H, Fu S J, Wu N l, D U K M 2008 Opt. Lett. 33 2248

    [8]

    Liu X M, Li D J, Shi P, Claus R H, Alexander S, Wu N, Du K M 2007 Opt. Commun. 272 192

    [9]

    Shi P, Li D J, Zhang H L, Wang Y D, Du K M 2004 Opt. Commun. 229 349

    [10]

    Cui L, Zhang H L, X U L, Li J, Yan Y, Duan C, Sha P F, Xin J G 2010 Chin. Phys. Lett. 27 114204

    [11]

    Mao Y F, Zhang H L, Xu L, He J L, Sun X, Xing J C, Xin J G 2012 Transactions of Beijing Institute of Technology 32 1162 (in Chinese) [毛叶飞, 张恒利, 徐浏, 何京良, 孙肖, 邢冀川, 辛建国2012北京理工大学学报32 1162]

    [12]

    Mao Y F, Zhang H L, Cui L, Xu L, Xing J C, Xin J G 2015 Laser Phys. 25 075002

  • [1]

    Zhou S H, Zhao H, Tang X J 2009 Chin. J. Lasers 36 1605 (in Chinese) [周寿恒, 赵鸿, 唐小军2009中国激光36 1605]

    [2]

    Minassian A, Thompson B A, Damzen M J 2003 Appl. Phys. B 76 341

    [3]

    Zhang T L, Yao J Q, Wang P, Zhu X Y, Cai Z Q, Zhang B G 2007 Chinese J. Lasers 34 1194 (in Chinese) [张铁犁, 姚建铨, 王鹏, 朱雪玉, 蔡志强, 张百钢2007中国激光34 1194]

    [4]

    Du K M, Wu N L, Xu J D, Giesekus J, Loosen P, Poprawe R 1998 Opt. Lett. 23 370

    [5]

    Poprawe R, Scchulz W 2003 Riken Rev. 50 3

    [6]

    Shi P, Zhang H L, Wang Y J, Robert D, D U K M 2004 Acta Opt. Sin. 24 641 (in Chinese) [石鹏, 张恒利, 汪永东, Robert Diart, 杜可明2004光学学报24 641]

    [7]

    Zhu P, Li D J, Qi B S, Alexander S, Shi P, Claus H, Fu S J, Wu N l, D U K M 2008 Opt. Lett. 33 2248

    [8]

    Liu X M, Li D J, Shi P, Claus R H, Alexander S, Wu N, Du K M 2007 Opt. Commun. 272 192

    [9]

    Shi P, Li D J, Zhang H L, Wang Y D, Du K M 2004 Opt. Commun. 229 349

    [10]

    Cui L, Zhang H L, X U L, Li J, Yan Y, Duan C, Sha P F, Xin J G 2010 Chin. Phys. Lett. 27 114204

    [11]

    Mao Y F, Zhang H L, Xu L, He J L, Sun X, Xing J C, Xin J G 2012 Transactions of Beijing Institute of Technology 32 1162 (in Chinese) [毛叶飞, 张恒利, 徐浏, 何京良, 孙肖, 邢冀川, 辛建国2012北京理工大学学报32 1162]

    [12]

    Mao Y F, Zhang H L, Cui L, Xu L, Xing J C, Xin J G 2015 Laser Phys. 25 075002

  • [1] 姚铭杰, 葛文琦, 颜博霞, 张鸿博. 1.3 μm-2.8 ns电光腔倒空Nd:YVO4激光器. 物理学报, 2023, 72(14): 144204. doi: 10.7498/aps.72.20230014
    [2] 段延敏, 周玉明, 孙瑛璐, 李志红, 张耀举, 王鸿雁, 朱海永. 声光调Q Nd:YVO4晶体级联拉曼倍频窄脉宽657 nm激光器. 物理学报, 2021, 70(22): 224209. doi: 10.7498/aps.70.20210695
    [3] 张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤. 波长锁定878.9 nm激光二极管抽运内腔式YVO4/BaWO4连续波拉曼激光器. 物理学报, 2018, 67(2): 024206. doi: 10.7498/aps.67.20171848
    [4] 毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅. 激光二极管双端直接抽运混合腔板条激光器. 物理学报, 2015, 64(1): 014203. doi: 10.7498/aps.64.014203
    [5] 樊莉, 陈海涛, 朱骏. 激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器. 物理学报, 2014, 63(15): 154208. doi: 10.7498/aps.63.154208
    [6] 李斌, 丁欣, 孙冰, 盛泉, 姜鹏波, 张巍, 刘简, 范琛, 张海永, 姚建铨. 28.2 W波长锁定878.6 nm激光二极管共振抽运双晶体1064 nm激光器. 物理学报, 2014, 63(21): 214206. doi: 10.7498/aps.63.214206
    [7] 周英, 戴玉, 姚淑娜, 刘军, 陈家斌, 陈淑芬, 辛建国. 激光二极管抽运Nd:YVO4晶体的三维热效应分析. 物理学报, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [8] 朱海永, 张戈, 张耀举, 黄呈辉, 段延敏, 魏勇, 尉鹏飞, 于永丽. LD端面抽运c切Nd:YVO4自拉曼倍频589 nm黄光激光研究. 物理学报, 2011, 60(9): 094209. doi: 10.7498/aps.60.094209
    [9] 张恒利, 闫 莹, 杜克明. 激光二极管端面抽运Nd∶YVO4晶体连续输出板条激光器研究. 物理学报, 2008, 57(11): 6982-6986. doi: 10.7498/aps.57.6982
    [10] 王 宁, 陆雨田, 李晓莉, 焦志勇. InnoSlab混合腔输出光束质量的理论研究. 物理学报, 2008, 57(9): 5632-5638. doi: 10.7498/aps.57.5632
    [11] 武丁二, 周 睿, 张晓华, 丁 欣, 姚建铨, 颜彩繁, 张光寅. LD端抽运平直腔Nd:YVO4固态激光器的输出功率特性研究. 物理学报, 2006, 55(3): 1196-1200. doi: 10.7498/aps.55.1196
    [12] 尚连聚. 激光二极管端面抽运的1.34μm Nd:YVO4平凹腔型激光器. 物理学报, 2003, 52(10): 2476-2480. doi: 10.7498/aps.52.2476
    [13] 陈晓波, 刘凯, 庄健, 王国文, 陈创天. HoYb:YVO4的上转换发光研究. 物理学报, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [14] 李瑞宁, 来引娟, 马小涛. 激光二极管抽运Nd∶YVO4和KTP倍频产生单频绿光激发器. 物理学报, 2002, 51(8): 1736-1738. doi: 10.7498/aps.51.1736
    [15] 柳强, 巩马理, 闫平, 贾维溥, 崔瑞祯, 王东生. GaAs被动调Q兼输出耦合Nd∶YVO4激光特性研究. 物理学报, 2002, 51(12): 2756-2760. doi: 10.7498/aps.51.2756
    [16] 尚连聚, 郑义. 激光二极管端面抽运的1.34μm Nd:YVO4三镜折叠腔型激光器. 物理学报, 2002, 51(9): 2015-2017. doi: 10.7498/aps.51.2015
    [17] 张潮波, 宋峰, 孟凡臻, 丁欣, 张光寅, 商美茹. 利用输出功率测量激光二极管端面抽运的固体激光器热透镜焦距. 物理学报, 2002, 51(7): 1517-1520. doi: 10.7498/aps.51.1517
    [18] 冯衍, 宋峰, 赵丽娟, 张潮波, 郭红沧, 张光寅. LD抽运Nd:YVO4晶体中的上转换及其影响. 物理学报, 2001, 50(2): 335-340. doi: 10.7498/aps.50.335
    [19] 何京良, 卢兴强, 贾玉磊, 满宝元, 祝世宁, 朱永元. BBO四倍频全固态Nd:YVO4紫外激光器. 物理学报, 2000, 49(10): 2106-2108. doi: 10.7498/aps.49.2106
    [20] 张恒利, 何京良, 陈毓川, 侯 玮, 刘 嵘, 冯宝华, 许祖彦, 王建明, 吴 星, 吴柏昌, 陈创天. 激光二极管抽运Nd∶YVO4晶体1342nm和671nm激光器研究. 物理学报, 1998, 47(9): 1579-1584. doi: 10.7498/aps.47.1579
计量
  • 文章访问数:  6279
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-22
  • 修回日期:  2016-07-11
  • 刊出日期:  2016-10-05

/

返回文章
返回