-
利用密度泛函理论的B3LYP杂化方法,在相对论有效芯势模型下,使用Gaussian 03程序对IV价镎离子(Np4+)与硝酸根离子(NO3-)形成的几种配合物Np(NO3)nq(n=16,q=-2+3)的几何结构进行了优化,给出了其结构参数及性质.研究发现:Np4+与NO3-在结合过程中均以双齿模式结合,且Np4+与2(NO3-)结合形成的Np(NO3)22+配合物的NpN键及NpO键的键长最短,但Np4+与4(NO3-)结合形成的Np(NO3)4配合物的结合能最大、结合最稳定.最后,进一步计算了Np(NO3)4配合物的红外光谱,通过与已有的实验数据对比的一致性,确认了本文计算结果的可靠性.In the process of nuclear waste disposal, the valuable uranium and plutonium are recycled and separated by dissolving the spent fuel in nitric acid. However, transuranic Np greatly influences the process of separation and recovery. Therefore, it is vital to study the structure and properties of nitrate, which is combined with neptunium ions and nitric acid. Furthermore, there are few researches about nitrate formed by tetravalent neptunium ions. So in this article, by using B3LYP hybrid method of density functional theory, the Gaussian 03 program is used to optimize the geometric construction of the coordination compounds Np(NO3)nq (n=1-6, q=-2-+3) formed by the tetravalent neptunium ions (Np4+) and nitrate ion (NO3-). Under the relativistic effective core potential model, the structure parameters and properties are reported. It is found that NO3- coordinates to Np4+ as a bidentate ligand, and the NpN and NpO bonds are the shortest in Np(NO3)22+, while the binding energy of the Np(NO3)4 is the largest. The infrared spectra of Np(NO3)4 are calculated in the gas and liquid phase. Comparing with the available experimental data, the reliability of the calculation results in this work is confirmed.
-
Keywords:
- Np(NO3)nq /
- density functional theory /
- binding energy /
- infrared spectral analysis
[1] Zhou W G 2011 Prog. In. Chem. 23 1272 (in Chinese) [韦悦周 2011 化学进展 23 1272]
[2] Tian G X 2015 J. Nucl. Radioanal 37 276 (in Chinese) [田国新 2015 核化学与放射化学 37 276]
[3] Wu Y P 1996 Atom. En. Sci. Technol. 30 179 (in Chinese) [吴宇平 1996 原子能科学技术 30 179]
[4] Laidler J B 1966 J. Chem. Soc. A 88 780
[5] Sergei Mikhailov B A (translated by Zhang X X, Zhu J, Zhao S Z) 1971 Neptunium in Analytical Chemistry (Beijing: Atomic Energy Press) pp19-23 (in Chinese) [米哈伊诺夫B A 著(张心祥, 祝疆, 姜延林, 赵守真 译)1971 镎的分析化学 (北京: 原子能出版社) 第1923页]
[6] Yin Y P, Dong C Z, Ding X B 2015 Chem. Phys. Lett. 635 134
[7] Zeng J H, Yang X, Liao J L, Liu N, Yang Y Y, Chai Z F, Wang D Q 2014 Phys. Chem. Chem. Phys. 16 16536
[8] Yang X, Liang Y N, Ding S D, Li S J, Chai Z F, Wang D Q 2014 Inorg. Chem. 53 7848
[9] Vallet V, Macak P, Wahlgren U, Grenthe I 2006 Theor. Chem. Acc. 115 145
[10] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
[11] Schreckenbach G, Hay P J, Martin R L 1999 J. Comput. Chem. 20 70
[12] Ehlers A W, Frenking G 1994 J. Am. Chem. Soc. 116 1514
[13] Zheng Y Y, Ren G M, Chen R, Wang X M, Chen X H, Wang L, Yuan L, Huang X F 2014 Acta Phys. Sin. 63 213101 (in Chinese) [郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤 2014 物理学报 63 213101]
[14] Cao X, Dolg M, Stoll H 2003 J. Chem. Phys. 118 487
[15] Cao X, Dolg M, Stoll H 2004 J. Molec. Struct. (Theochem) 673 203
[16] Kuchle W, Dolg M, Stoll H, Preuss H 1994 J. Chem. Phys. 100 7535
[17] Yin Y P, Dong C Z, Du L Q 2014 Eur. Phys. J. D 68 1
[18] Hay P J, Martin R L 1998 J. Chem. Phys. 109 3875
[19] Glukhovtsev M N, Pross A, Mcgrath M P 1995 J. Chem. Phys. 103 1878
[20] Boys S F, Bernardi F 1970 Mol. Phys. 19 553
[21] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C 2004 Gaussian 03 Revision B. 05 (Wallingford: Gaussian Inc)
[22] Shi B D, Wang J Z 1991 J. Xiamen Univ. 1 55 (in Chinese) [施彼得, 王金枝 1991 厦门大学学报 (自然科学版) 1 55]
[23] Allen P G, Bucher J J, Shuh D K, Edelstein N M, Reich T 1997 Inorg. Chem. 36 4676
-
[1] Zhou W G 2011 Prog. In. Chem. 23 1272 (in Chinese) [韦悦周 2011 化学进展 23 1272]
[2] Tian G X 2015 J. Nucl. Radioanal 37 276 (in Chinese) [田国新 2015 核化学与放射化学 37 276]
[3] Wu Y P 1996 Atom. En. Sci. Technol. 30 179 (in Chinese) [吴宇平 1996 原子能科学技术 30 179]
[4] Laidler J B 1966 J. Chem. Soc. A 88 780
[5] Sergei Mikhailov B A (translated by Zhang X X, Zhu J, Zhao S Z) 1971 Neptunium in Analytical Chemistry (Beijing: Atomic Energy Press) pp19-23 (in Chinese) [米哈伊诺夫B A 著(张心祥, 祝疆, 姜延林, 赵守真 译)1971 镎的分析化学 (北京: 原子能出版社) 第1923页]
[6] Yin Y P, Dong C Z, Ding X B 2015 Chem. Phys. Lett. 635 134
[7] Zeng J H, Yang X, Liao J L, Liu N, Yang Y Y, Chai Z F, Wang D Q 2014 Phys. Chem. Chem. Phys. 16 16536
[8] Yang X, Liang Y N, Ding S D, Li S J, Chai Z F, Wang D Q 2014 Inorg. Chem. 53 7848
[9] Vallet V, Macak P, Wahlgren U, Grenthe I 2006 Theor. Chem. Acc. 115 145
[10] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785
[11] Schreckenbach G, Hay P J, Martin R L 1999 J. Comput. Chem. 20 70
[12] Ehlers A W, Frenking G 1994 J. Am. Chem. Soc. 116 1514
[13] Zheng Y Y, Ren G M, Chen R, Wang X M, Chen X H, Wang L, Yuan L, Huang X F 2014 Acta Phys. Sin. 63 213101 (in Chinese) [郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤 2014 物理学报 63 213101]
[14] Cao X, Dolg M, Stoll H 2003 J. Chem. Phys. 118 487
[15] Cao X, Dolg M, Stoll H 2004 J. Molec. Struct. (Theochem) 673 203
[16] Kuchle W, Dolg M, Stoll H, Preuss H 1994 J. Chem. Phys. 100 7535
[17] Yin Y P, Dong C Z, Du L Q 2014 Eur. Phys. J. D 68 1
[18] Hay P J, Martin R L 1998 J. Chem. Phys. 109 3875
[19] Glukhovtsev M N, Pross A, Mcgrath M P 1995 J. Chem. Phys. 103 1878
[20] Boys S F, Bernardi F 1970 Mol. Phys. 19 553
[21] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C 2004 Gaussian 03 Revision B. 05 (Wallingford: Gaussian Inc)
[22] Shi B D, Wang J Z 1991 J. Xiamen Univ. 1 55 (in Chinese) [施彼得, 王金枝 1991 厦门大学学报 (自然科学版) 1 55]
[23] Allen P G, Bucher J J, Shuh D K, Edelstein N M, Reich T 1997 Inorg. Chem. 36 4676
计量
- 文章访问数: 6858
- PDF下载量: 153
- 被引次数: 0