搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InOOH压致氢键对称化及其弹性性质

康端 巫翔

引用本文:
Citation:

InOOH压致氢键对称化及其弹性性质

康端, 巫翔

Pressure-induced hydrogen bond symmetrization of InOOH and its elastic properties

Kang Duan, Wu Xiang
PDF
导出引用
  • 利用第一性原理研究了InOOH在高压下的氢键对称化行为及其对InOOH弹性等性质的影响.结果表明约在18 GPa时InOOH中的氢键发生了对称化转变,导致轴比率b/c对压力的斜率由负值变为正值;压缩弹性常数、非对角弹性常数、体积模量和纵波波速出现异常增加,如体积模量增加了20%40%.高压下InOOH弹性性质呈现出更加明显的各向异性.常压下InOOH呈现韧性,且伴随着氢键对称化韧性异常增加.对畸变金红石型MOOH(M=Al,In,Ga,Fe,Cr)化合物在高压下的弹性性质转变与氢键性质转变的耦合规律进行了初探.
    Pressure-induced hydrogen bond symmetrization of InOOH as well as its effects on the elastic properties is investigated by first-principles simulation. The results indicate that the hydrogen bond in InOOH symmetrized at about 18 GPa, resulting in the pressure derivative of the b/c axial ratio changing from negative to positive. While the a/c axial ratio increases with the increasing pressure over a range of 0-40 GPa, its pressure derivative does not change significantly across the hydrogen bond symmetrization. In the text, A-InOOH denotes the asymmetric hydrogen bond phase and S-InOOH refers to the symmetric hydrogen bond phase. The compressional and off-diagonal elastic constants, bulk modulus B, Poisson's ratio , B/G (G represents shear modulus) and longitudinal wave velocity VP increase with the increasing pressure in both A-InOOH and S-InOOH. These properties of A-InOOH are significantly smaller than those of S-InOOH, and therefore they increase abnormally during the hydrogen bond symmetrization, such as a 20%-40% increase of the bulk modulus. Shear modulus G and Young's modulus E increase with the increasing pressure in A-InOOH, but decrease with the increasing pressure in S-InOOH, implying that hydrogen bond symmetrization would change their pressure evolution trends obviously. Shear elastic constant C44 and shear wave velocity VS decrease with the increasing pressure in both A-InOOH and S-InOOH, and more quickly in the latter, indicating that the structure change of hydrogen bond would change their pressure evolution rates. The Young's moduli along the[100],[010] and[001] directions increase with the increasing pressure in A-InOOH, while decrease with the increasing pressure in S-InOOH, and those along the[110],[110],[110] and[110] directions always increase with the increasing pressure over a range of 0-40 GPa. The anisotropy and toughness of InOOH increase with the increasing pressure in both A-InOOH and S-InOOH, and the hydrogen bond symmetrization results in abnormal increase. In the materials containing hydrogen bonds, the effects of hydrogen bond symmetrization on different compressional elastic constants depend on the hydrogen bond projection on corresponding axes:the bigger the projection, the more significant the effect is. InOOH has an obviously smaller bulk modulus than -AlOOH. The dominant reason is that the In3+ radius (0.81 , 1 =0.1 nm) is larger than Al3+ radius (0.50 ), resulting in the weaker interaction between In3+ and O2- than that between Al3+ and O2-. In addition, InOOH has more vacancies than -AlOOH. Combining with previous investigations on other rutile-distorted MOOH (M= Al, Ga, Fe, Cr), we can infer that the axial ratios, elastic properties and wave velocities of all MOOH materials have similar pressure evolutions to those of InOOH, and the hydrogen bond symmetrization has similar effects on the properties of MOOH.
      通信作者: 巫翔, wuxiang@cug.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41473056)资助的课题.
      Corresponding author: Wu Xiang, wuxiang@cug.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41473056).
    [1]

    Holzapfel W B 1972 J. Chem. Phys. 56 712

    [2]

    Sano-Furukawa A, Yagi T, Okada T, Gotou H, Kikegawa T 2012 Phys. Chem. Miner. 39 375

    [3]

    Tsuchiya J, Tsuchiya T, Sano A, Ohtani E 2008 J. Miner. Petrol. Sci. 103 116

    [4]

    Gleason A E, Quiroga C E, Suzuki A, Pentcheva R, Mao W L 2013 Earth Planet. Sci. Lett. 379 49

    [5]

    Goncharov A F, Manaa M R, Zaug J M, Gee R H, Fried L E, Montgomery W B 2005 Phys. Rev. Lett. 94 065505

    [6]

    Lu X Z, Zhang Y, Zhao P, Fang S J 2011 J. Phys. Chem. B 115 71

    [7]

    Benoit M, Marx D, Parrinello M 1998 Nature 392 258

    [8]

    Aoki K, Yamawaki H, Sakashita M, Fujihisa H 1996 Phys. Rev. B 54 15673

    [9]

    Suzuki A, Ohtani E, Kamada T 2000 Phys. Chem. Miner. 27 689

    [10]

    Bolotina N B, Molchanov V N, Dyuzheva T I, Lityagina L M, Bendeliani N A 2008 Crystallogr. Rep. 53 960

    [11]

    Christensen A N, Hansen P, Lehmann M S 1976 J. Solid State Chem. 19 299

    [12]

    Kuribayashi T, Sano-Furukawa A, Nagase T 2013 Phys. Chem. Miner. 41 303

    [13]

    Sano-Furukawa A, Kagi H, Nagai T, Nakano S, Fukura S, Ushijima D, Iizuka R, Ohtani E, Yagi T 2009 Am. Mineral. 94 1255

    [14]

    Mashino I, Murakami M, Ohtani E 2016 J. Geophys. Res. Sol. Ea. 121 595

    [15]

    Tsuchiya J, Tsuchiya T 2009 Phys. Earth. Planet. In. 174 122

    [16]

    Li Z, Xie Z, Zhang Y, Wu L, Wang X, Fu X 2007 J. Phys. Chem. C 111 18348

    [17]

    Zhao H, Yin W, Zhao M, Song Y, Yang H 2013 Appl. Catal. B 130 178

    [18]

    Chen X, Lin P Y, Shi X C, Zhang Z L, Xie Z P, Li Z H 2009 Chin. J. Inorg. Chem. 25 1917

    [19]

    Tao X J, Zhao Y B, Sun L, Zhou S M 2015 Mater. Chem. Phys. 149 275

    [20]

    Muruganandham M, Lee G J, Wu J J, Levchuk I, Sillanpaa M 2013 Mater. Lett. 98 86

    [21]

    Sano A, Yagi T, Okada T, Gotou H, Ohtani E, Tsuchiya J, Kikegawa T 2008 J. Miner. Petrol. Sci. 103 152

    [22]

    Wang X F, Ma J J, Jiao Z Y, Zhang X Z 2016 Acta Phys. Sin. 65 206201 (in Chinese)[王雪飞, 马静婕, 焦照勇, 张现周 2016 物理学报 65 206201]

    [23]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文朋, 李旭升 2016 物理学报 65 077101]

    [24]

    Hao J, Zhou G G, Ma Y, Huang W Q, Zhang P, Lu G W 2016 Acta Phys. Sin. 65 113101 (in Chinese)[郝娟, 周广刚, 马跃, 黄文奇, 张鹏, 卢贵武 2016 物理学报 65 113101]

    [25]

    Pan X D, Wei Y, Cai H Z, Qi X H, Zheng X, Hu C Y, Zhang X X 2016 Acta Phys. Sin. 65 156201 (in Chinese)[潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔 2016 物理学报 65 156201]

    [26]

    Yao B D, Hu G Q, Yu Z S, Zhang H F, Shi L Q, Shen H, Wang Y X 2016 Acta Phys. Sin. 65 026202 (in Chinese)[姚宝殿, 胡桂青, 于治水, 张慧芬, 施立群, 沈皓, 王月霞 2016 物理学报 65 026202]

    [27]

    Wu R X, Liu D J, Yu Y, Yang T 2016 Acta Phys. Sin. 65 027101 (in Chinese)[吴若熙, 刘代俊, 于洋, 杨涛 2016 物理学报 65 027101]

    [28]

    Huang A, Lu Z P, Zhou M, Zhou X Y, Tao Y Q, Sun P, Zhang J T, Zhang T B 2017 Acta Phys. Sin. 66 016103 (in Chinese)[黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波 2017 物理学报 66 016103]

    [29]

    Lehmann M S, Larsen F K, Poulsen F R, Christensen A N, Rasmussen S E 1970 Acta. Chem. Scand. 24 1662

    [30]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [31]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Page Y L, Saxe P 2002 Phys. Rev. B 64 104104

    [34]

    Liu L L, Wu X Z, Wang R, Nie X F, He Y L, Zou X 2017 Crystals 7 111

    [35]

    Wu Z, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115

    [36]

    Hill R 1952 Proc. Phys. Soc. Sect. A 65 349

    [37]

    Wen Y F, Wang L, Liu H L, Song L 2017 Crystals 7 39

    [38]

    Pugh S F 1954 The London, Edingburgh, and Dublin Philos. Mag. J. Sci. 45 823

    [39]

    Nye J F 1985 Clarencon 45 391

    [40]

    Wu X, Wu Y, Lin J F, Liu J, Mao Z, Guo X, Yoshino T, McCammon C, Prakapenka V B, Xiao Y 2016 J. Geophys. Res. Sol. Ea. 121 6411

    [41]

    Tsuchiya J, Tsuchiya T 2008 Phys. Earth. Planet. In. 170 215

    [42]

    Tsuchiya J, Tsuchiya T, Tsuneyuki S, Yamanaka T Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton:CRC Press) pp1057, 1080

    [43]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) pp1057, 1080

  • [1]

    Holzapfel W B 1972 J. Chem. Phys. 56 712

    [2]

    Sano-Furukawa A, Yagi T, Okada T, Gotou H, Kikegawa T 2012 Phys. Chem. Miner. 39 375

    [3]

    Tsuchiya J, Tsuchiya T, Sano A, Ohtani E 2008 J. Miner. Petrol. Sci. 103 116

    [4]

    Gleason A E, Quiroga C E, Suzuki A, Pentcheva R, Mao W L 2013 Earth Planet. Sci. Lett. 379 49

    [5]

    Goncharov A F, Manaa M R, Zaug J M, Gee R H, Fried L E, Montgomery W B 2005 Phys. Rev. Lett. 94 065505

    [6]

    Lu X Z, Zhang Y, Zhao P, Fang S J 2011 J. Phys. Chem. B 115 71

    [7]

    Benoit M, Marx D, Parrinello M 1998 Nature 392 258

    [8]

    Aoki K, Yamawaki H, Sakashita M, Fujihisa H 1996 Phys. Rev. B 54 15673

    [9]

    Suzuki A, Ohtani E, Kamada T 2000 Phys. Chem. Miner. 27 689

    [10]

    Bolotina N B, Molchanov V N, Dyuzheva T I, Lityagina L M, Bendeliani N A 2008 Crystallogr. Rep. 53 960

    [11]

    Christensen A N, Hansen P, Lehmann M S 1976 J. Solid State Chem. 19 299

    [12]

    Kuribayashi T, Sano-Furukawa A, Nagase T 2013 Phys. Chem. Miner. 41 303

    [13]

    Sano-Furukawa A, Kagi H, Nagai T, Nakano S, Fukura S, Ushijima D, Iizuka R, Ohtani E, Yagi T 2009 Am. Mineral. 94 1255

    [14]

    Mashino I, Murakami M, Ohtani E 2016 J. Geophys. Res. Sol. Ea. 121 595

    [15]

    Tsuchiya J, Tsuchiya T 2009 Phys. Earth. Planet. In. 174 122

    [16]

    Li Z, Xie Z, Zhang Y, Wu L, Wang X, Fu X 2007 J. Phys. Chem. C 111 18348

    [17]

    Zhao H, Yin W, Zhao M, Song Y, Yang H 2013 Appl. Catal. B 130 178

    [18]

    Chen X, Lin P Y, Shi X C, Zhang Z L, Xie Z P, Li Z H 2009 Chin. J. Inorg. Chem. 25 1917

    [19]

    Tao X J, Zhao Y B, Sun L, Zhou S M 2015 Mater. Chem. Phys. 149 275

    [20]

    Muruganandham M, Lee G J, Wu J J, Levchuk I, Sillanpaa M 2013 Mater. Lett. 98 86

    [21]

    Sano A, Yagi T, Okada T, Gotou H, Ohtani E, Tsuchiya J, Kikegawa T 2008 J. Miner. Petrol. Sci. 103 152

    [22]

    Wang X F, Ma J J, Jiao Z Y, Zhang X Z 2016 Acta Phys. Sin. 65 206201 (in Chinese)[王雪飞, 马静婕, 焦照勇, 张现周 2016 物理学报 65 206201]

    [23]

    Wang H Y, Hu Q K, Yang W P, Li X S 2016 Acta Phys. Sin. 65 077101 (in Chinese)[王海燕, 胡前库, 杨文朋, 李旭升 2016 物理学报 65 077101]

    [24]

    Hao J, Zhou G G, Ma Y, Huang W Q, Zhang P, Lu G W 2016 Acta Phys. Sin. 65 113101 (in Chinese)[郝娟, 周广刚, 马跃, 黄文奇, 张鹏, 卢贵武 2016 物理学报 65 113101]

    [25]

    Pan X D, Wei Y, Cai H Z, Qi X H, Zheng X, Hu C Y, Zhang X X 2016 Acta Phys. Sin. 65 156201 (in Chinese)[潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔 2016 物理学报 65 156201]

    [26]

    Yao B D, Hu G Q, Yu Z S, Zhang H F, Shi L Q, Shen H, Wang Y X 2016 Acta Phys. Sin. 65 026202 (in Chinese)[姚宝殿, 胡桂青, 于治水, 张慧芬, 施立群, 沈皓, 王月霞 2016 物理学报 65 026202]

    [27]

    Wu R X, Liu D J, Yu Y, Yang T 2016 Acta Phys. Sin. 65 027101 (in Chinese)[吴若熙, 刘代俊, 于洋, 杨涛 2016 物理学报 65 027101]

    [28]

    Huang A, Lu Z P, Zhou M, Zhou X Y, Tao Y Q, Sun P, Zhang J T, Zhang T B 2017 Acta Phys. Sin. 66 016103 (in Chinese)[黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波 2017 物理学报 66 016103]

    [29]

    Lehmann M S, Larsen F K, Poulsen F R, Christensen A N, Rasmussen S E 1970 Acta. Chem. Scand. 24 1662

    [30]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [31]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Page Y L, Saxe P 2002 Phys. Rev. B 64 104104

    [34]

    Liu L L, Wu X Z, Wang R, Nie X F, He Y L, Zou X 2017 Crystals 7 111

    [35]

    Wu Z, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115

    [36]

    Hill R 1952 Proc. Phys. Soc. Sect. A 65 349

    [37]

    Wen Y F, Wang L, Liu H L, Song L 2017 Crystals 7 39

    [38]

    Pugh S F 1954 The London, Edingburgh, and Dublin Philos. Mag. J. Sci. 45 823

    [39]

    Nye J F 1985 Clarencon 45 391

    [40]

    Wu X, Wu Y, Lin J F, Liu J, Mao Z, Guo X, Yoshino T, McCammon C, Prakapenka V B, Xiao Y 2016 J. Geophys. Res. Sol. Ea. 121 6411

    [41]

    Tsuchiya J, Tsuchiya T 2008 Phys. Earth. Planet. In. 170 215

    [42]

    Tsuchiya J, Tsuchiya T, Tsuneyuki S, Yamanaka T Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton:CRC Press) pp1057, 1080

    [43]

    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press) pp1057, 1080

  • [1] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究. 物理学报, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [2] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, 2019, 68(20): 207301. doi: 10.7498/aps.68.20190664
    [3] 王浩玉, 农智升, 王继杰, 朱景川. AlxCrFeNiTi系高熵合金成分和弹性性质关系. 物理学报, 2019, 68(3): 036101. doi: 10.7498/aps.68.20181893
    [4] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [5] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [6] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [7] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [8] 牛雪莲, 王立久, 孙丹. 铬和镍的添加对Fe3Al合金力学性能影响的DFT研究. 物理学报, 2013, 62(3): 037104. doi: 10.7498/aps.62.037104
    [9] 王瑨, 李春梅, 敖靖, 李凤, 陈志谦. IVB族过渡金属氮化物弹性与光学性质研究. 物理学报, 2013, 62(8): 087102. doi: 10.7498/aps.62.087102
    [10] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [11] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究. 物理学报, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [12] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [13] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [14] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算. 物理学报, 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [15] 汝强, 胡社军, 赵灵智. LixFePO4(x=0.0, 0.75, 1.0)电子结构与弹性性质的第一性原理研究. 物理学报, 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [16] 陈海川, 杨利君. LiGaX2(X=S, Se, Te)的电子结构,光学和弹性性质的第一性原理计算. 物理学报, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [17] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究. 物理学报, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [18] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究. 物理学报, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [19] 侯榆青, 张小东, 姜振益. 第一性原理计算MAlH4(M=Na, K)的结构和弹性性质. 物理学报, 2010, 59(8): 5667-5671. doi: 10.7498/aps.59.5667
    [20] 周晶晶, 陈云贵, 吴朝玲, 庞立娟, 郑欣, 高涛. 钒基固溶体储氢材料弹性性质第一性原理研究. 物理学报, 2009, 58(10): 7044-7049. doi: 10.7498/aps.58.7044
计量
  • 文章访问数:  4372
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-21
  • 修回日期:  2017-08-14
  • 刊出日期:  2017-12-05

/

返回文章
返回