搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌入式三色光变器设计

徐平 唐少拓 袁霞 黄海漩 杨拓 罗统政 喻珺

引用本文:
Citation:

嵌入式三色光变器设计

徐平, 唐少拓, 袁霞, 黄海漩, 杨拓, 罗统政, 喻珺

Design of an embedded tricolor-shifting device

Xu Ping, Tang Shao-Tuo, Yuan Xia, Huang Hai-Xuan, Yang Tuo, Luo Tong-Zheng, Yu Jun
PDF
导出引用
  • 为解决目前亚波长二元矩形结构在光学防伪应用方面存在的防伪性能有待提升、制作困难导致性能劣化等问题,提出正弦结构等效矩形结构实现基于嵌入式亚波长一维单周期正弦结构的三色光变器.模拟仿真表明,亚波长正弦结构与原亚波长矩形结构性能相似,可获得优越的三色变换功能.当自然光以45角入射时,可在方位角0,58,90分别获得相应的蓝光、绿光、红光三色反射峰,反射率分别达到90%,89%,100%.分析并提出了该器件周期、槽深、膜厚以及入射角变化对反射峰的影响规律,探索了运用无掩模的双光束干涉曝光法制作母版的实验过程.提出的正弦结构三色光变器实现了方位角调节的高衍射效率自然光三色光变效果,突破了目前两色光变防伪的局限,同时降低了制作难度,可用通用的全息生产技术制作光栅结构,在光变图像防伪领域有重要应用.
    Insufficient anti-counterfeiting performance and difficulties in manufacturing lead to performance degradation of the subwavelength rectangular structure grating, when it is applied to the field of optical anti-counterfeiting. To solve the problem, an embedded subwavelength one-dimensional simple periodic sinusoidal grating structure is proposed in this paper to replace the previous structure with a rectangular structure. By using equivalent medium theory, we find that the rectangular structure whose duty ration is 0.5 has the same effective refractive index as the sinusoidal structure. Then equivalent structure parameters of a sinusoidal structure are obtained based on a rectangular structure tricolor-shifting device, and the characteristics of the reflection peak are analyzed. The result shows that the sinusoidal structure gating can realize the same tricolor-shifting properties with a higher reflective efficiency as the rectangular structure gating. When the incidence angle of natural light is 45 for TE and TM polarization, the highest reflectivity values of 90%, 89% and 100% in blue, green and red bands can be obtained at the azimuths of 24, 63 and 90, respectively. Then the azimuth-induced color shifts of blue, green and red are realized. Physical mechanism of the equivalent rectangular structure to sinusoidal structure is explained in non-resonance and resonance conditions. Under the non-resonance condition, both of them can be regarded as a layer of completely equivalent optical film, possessing exactly the same optical properties. Under the resonance condition, they can be regarded as a slab waveguide. So when their effective refractive indexes, periods, film thicknesses and depths are equal, they have the same optical characteristic matrixes, supported guided modes, and resonant peak positions. In addition, we investigate the influences of the deviations of key parameters, including grating period, grating depth, coating film thickness, and incidence angle, and propose the rigorous redundancy of these parameters. When the values of period, depth, thickness, and incidence angle are kept within the ranges of 430-455 nm, 88-160 nm, 10-40 nm, and 40-50, respectively, the device can well keep the color-shifting effects of blue, green and red light. A model structure of the sinusoidal grating is fabricated by two-beam laser interference lithography experimentally. The tricolor-shifting device based on the sinusoidal structure presented in this paper can realize high diffraction efficiency azimuth-induced color shifts of blue, green and red light when natural light is incident, which breaks through the limit of bi-color shifting technology and lowers the difficulties in manufacturing, and may have great applications in the field of the optically variable image security.
      通信作者: 黄海漩, hhx@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61275167)和深圳市基础研究计划(批准号:JCYJ20140418095735591,JCYJ20130329103020637,JC200903120023A)资助的课题.
      Corresponding author: Huang Hai-Xuan, hhx@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275167) and the Fundamental Research Program of Shenzhen, China (Grant Nos. JCYJ20140418095735591, JCYJ20130329103020637, JC200903120023A).
    [1]

    Wang Y, Shi W, Wang X 2015 Opt. Lett. 40 4647

    [2]

    Lin D, Fan P 2014 Science 345 298

    [3]

    Lo Y L, Chen Y B, Yang T Y 2011 Appl. Opt. 50 415

    [4]

    Feng J, Zhou C, Wang B, Zheng J, Jia W, Cao H, Lv P 2008 Appl. Opt. 47 6638

    [5]

    Lee H S, Yoon Y T, Lee S S, Kim S H, Lee K D 2007 Opt. Express 15 15457

    [6]

    Oonishi T, Konishi T, Itoh K 2007 J. Opt. Soc. Am. A 46 5019

    [7]

    Feng J, Zhou C, Zheng J 2009 Appl. Opt. 48 2697

    [8]

    Uddin M J, Khaleque T, Magnusson R 2014 Opt. Express 22 12307

    [9]

    Yoon J W, Lee K J, Magnusson R 2015 Opt. Express 23 28849

    [10]

    Grann E, Moharam M 1996 J. Opt. Soc. Am. A 13 988

    [11]

    Feng J, Zhou C, Cao H, Lu P 2010 Appl. Opt. 49 5697

    [12]

    Chen Y L, Liu W X, Liao N F 2010 Spectroscopy and Spectral Analysis 30 1922 (in Chinese)[陈永利, 刘文霞, 廖宁放 2010 光谱学与光谱分析 30 1922]

    [13]

    Bai B, Laukkanen J, Kuittinen M 2010 Appl. Opt. 49 5454

    [14]

    Berthod L, Gate V 2016 Opt. Mater. Express 6 2508

    [15]

    Cui W, Wang H 2017 Opt. Express 25 4097

    [16]

    Xu P, Yuan X, Huang H X, Yang T, Zhu T F, Tang S T, Peng W D 2016 Nanoscale Res. Lett. 11 485

    [17]

    Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773

    [18]

    Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887

    [19]

    Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177

    [20]

    Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159

    [21]

    Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wang L L, Chen X X, Liu J Y 2007 Opt. Express 15 809

    [22]

    Cormier G, Boudreau B, Thriault S 2001 J. Opt. Soc. Am. A 18 1771

    [23]

    Wang S, Magusson R 1990 J. Opt. Soc. Am. A 7 1470

  • [1]

    Wang Y, Shi W, Wang X 2015 Opt. Lett. 40 4647

    [2]

    Lin D, Fan P 2014 Science 345 298

    [3]

    Lo Y L, Chen Y B, Yang T Y 2011 Appl. Opt. 50 415

    [4]

    Feng J, Zhou C, Wang B, Zheng J, Jia W, Cao H, Lv P 2008 Appl. Opt. 47 6638

    [5]

    Lee H S, Yoon Y T, Lee S S, Kim S H, Lee K D 2007 Opt. Express 15 15457

    [6]

    Oonishi T, Konishi T, Itoh K 2007 J. Opt. Soc. Am. A 46 5019

    [7]

    Feng J, Zhou C, Zheng J 2009 Appl. Opt. 48 2697

    [8]

    Uddin M J, Khaleque T, Magnusson R 2014 Opt. Express 22 12307

    [9]

    Yoon J W, Lee K J, Magnusson R 2015 Opt. Express 23 28849

    [10]

    Grann E, Moharam M 1996 J. Opt. Soc. Am. A 13 988

    [11]

    Feng J, Zhou C, Cao H, Lu P 2010 Appl. Opt. 49 5697

    [12]

    Chen Y L, Liu W X, Liao N F 2010 Spectroscopy and Spectral Analysis 30 1922 (in Chinese)[陈永利, 刘文霞, 廖宁放 2010 光谱学与光谱分析 30 1922]

    [13]

    Bai B, Laukkanen J, Kuittinen M 2010 Appl. Opt. 49 5454

    [14]

    Berthod L, Gate V 2016 Opt. Mater. Express 6 2508

    [15]

    Cui W, Wang H 2017 Opt. Express 25 4097

    [16]

    Xu P, Yuan X, Huang H X, Yang T, Zhu T F, Tang S T, Peng W D 2016 Nanoscale Res. Lett. 11 485

    [17]

    Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773

    [18]

    Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887

    [19]

    Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177

    [20]

    Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159

    [21]

    Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wang L L, Chen X X, Liu J Y 2007 Opt. Express 15 809

    [22]

    Cormier G, Boudreau B, Thriault S 2001 J. Opt. Soc. Am. A 18 1771

    [23]

    Wang S, Magusson R 1990 J. Opt. Soc. Am. A 7 1470

  • [1] 吴婉玲, 王向珂, 虞华康, 李志远. 基于微纳光纤双模式干涉的亚波长聚焦光场及光捕获应用. 物理学报, 2024, 73(10): 100401. doi: 10.7498/aps.73.20240181
    [2] 汪静丽, 张见哲, 陈鹤鸣. 基于亚波长光栅和三明治结构的偏振无关微环谐振器的设计与仿真. 物理学报, 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [3] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射. 物理学报, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [4] 祁云平, 南向红, 摆玉龙, 王向贤. 基于SPPs-CDEW混合模式的亚波长单缝多凹槽结构全光二极管. 物理学报, 2017, 66(11): 117102. doi: 10.7498/aps.66.117102
    [5] 陈刚, 温中泉, 武志翔. 光学超振荡与超振荡光学器件. 物理学报, 2017, 66(14): 144205. doi: 10.7498/aps.66.144205
    [6] 姜美玲, 郑立恒, 池骋, 朱星, 方哲宇. 阴极荧光在表面等离激元研究领域的应用. 物理学报, 2017, 66(14): 144201. doi: 10.7498/aps.66.144201
    [7] 徐平, 袁霞, 杨拓, 黄海漩, 唐少拓, 黄燕燕, 肖钰斐, 彭文达. 嵌入式三色光变器. 物理学报, 2017, 66(12): 124201. doi: 10.7498/aps.66.124201
    [8] 王茹, 王向贤, 杨华, 叶松. TE0导模干涉刻写周期可调亚波长光栅理论研究. 物理学报, 2016, 65(9): 094206. doi: 10.7498/aps.65.094206
    [9] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [10] 黄海漩, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕. 太赫兹偶数分束器设计与公差分析. 物理学报, 2015, 64(15): 154212. doi: 10.7498/aps.64.154212
    [11] 仲义, 许吉, 陆云清, 王敏娟, 王瑾. 基于一维金属光子晶体平凹镜的柱矢量光束亚波长聚焦. 物理学报, 2014, 63(23): 237801. doi: 10.7498/aps.63.237801
    [12] 湛胜高, 梁斌明, 朱幸福, 陈家壁, 庄松林. 基于空气孔的光子晶体亚波长成像的特性研究. 物理学报, 2014, 63(15): 154212. doi: 10.7498/aps.63.154212
    [13] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [14] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究. 物理学报, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [15] 梁高峰, 赵青, 陈欣, 王长涛, 赵泽宇, 罗先刚. 基于多层膜结构的亚波长光栅研究. 物理学报, 2012, 61(10): 104203. doi: 10.7498/aps.61.104203
    [16] 陈小军, 张自丽, 葛辉良. 四光束干涉单次曝光构造含平面缺陷三维周期性微纳结构. 物理学报, 2012, 61(17): 174211. doi: 10.7498/aps.61.174211
    [17] 童元伟, 田双, 庄松林. 等效折射率为非-1时的亚波长成像. 物理学报, 2011, 60(5): 054201. doi: 10.7498/aps.60.054201
    [18] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束. 物理学报, 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [19] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [20] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究. 物理学报, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
计量
  • 文章访问数:  6501
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-09-02
  • 刊出日期:  2019-01-20

/

返回文章
返回