-
分析了菲涅耳非相干相关全息(Fresnel incoherent correlation holography,FINCH)系统中纯相位空间光调制器(spatial light modulator,SLM)加载螺旋相位掩模时的点扩散函数.以氙灯为照明光源搭建了FINCH系统,电荷耦合器记录的点源全息图与点扩散函数模拟结果一致.采用该系统分别在SLM上加载双透镜掩模和螺旋相位调制双透镜掩模两种情况下对分辨率板和非染色洋葱细胞成像,给出了成像对比结果.结果表明:采用螺旋相位调制的FINCH系统可以在几乎不牺牲分辨率的情况下提高图像的边缘对比度;同样,对相位物体也可以实现图像的边缘提取和识别.该方法在实时监测活细胞的分裂、形变等方面具有重要应用前景.Fresnel incoherent correlation holography (FINCH) has attracted much attention because it is able to record the holograms of three-dimensional (3D) samples under incoherent illumination with just a charge coupled device (CCD) and spatial light modulator (SLM). The FINCH technology achieves the splitting and phase shifting of the incident beam by loading a phase mask on an SLM. Three holograms, whose phase factors are different from each other, are recorded sequentially by a CCD. After the three holograms are superposed in the computer, the zero order image and a twin image are eliminated, and a complex hologram is obtained. The 3D properties of the object are revealed when the complex hologram is reconstructed in the computer. Spiral phase filters (SPFs) are commonly used to produce optical vortices, which can enhance and recognize image edges. In this paper, the spiral phase modulated FINCH system illuminated by Xenon lamp is built, in which the phase-only SLM is space-division multiplexed by a helical lens (superposed by an SPF and a lens) and a conventional lens. The mathematical model of spiral phase modulated FINCH system is established based on wave optics theory. The specific forms of the point spread function (PSF) and the reconstruction distance of the system are given for the first time. Experiments are conducted by using a small aperture with a diameter of 20 nm as a point source, the point source hologram recorded by CCD and the reconstructed image are consistent with the simulated ones. When the system is used for imaging resolution target and unstained onion cells, the edge contrast enhancement effects are obtained without the loss of resolution. The results show that the spiral phase modulated FINCH system can not only improve the edge contrast of the amplitude object, but also extract the edge information or recognition of the phase objects. This method has an important application prospect in the quantitative imaging of phase objects such as in real-time monitoring cell division and deformation of living cells.
-
Keywords:
- incoherent digital holography /
- point spread function /
- spiral phase modulation /
- edge extraction and recognition
[1] Gabor D 1948 Nature 161 777
[2] Mertz L, Young N O 1962 Optical Instruments and Techniques London, United Kingdom, July 11-14, 1961 p305
[3] Wan Y, Wang D, Man T 2014 Opt. Express 22 8565
[4] Kim M K 2013 Opt. Express 21 9636
[5] Naik D N, Pedrini G, Osten W 2013 Opt. Express 21 3990
[6] Rosen J, Brooker G 2007 Opt. Express 15 2244
[7] Cochran G 1966 J. Opt. Soc. Am. 56 1513
[8] Stroke G W, Restrick R C 1965 Appl. Phys. Lett. 7 229
[9] Goodman J W, Lawrence R W 1967 Appl. Phys. Lett. 11 77
[10] Huang T S 1971 Proc. IEEE 59 1335
[11] Schnars U, Jptner W P O 2002 Meas. Sci. Technol. 13 R85
[12] Schnars U, Jptner W 1994 Appl. Opt. 33 179
[13] Yang J, Wu X C, Wu Y C, Yao L C, Chen L H, Qiu K Z, Cen K F 2015 Acta Phys. Sin. 64 114209(in Chinese) [阳静, 吴学成, 吴迎春, 姚龙超, 陈玲红, 邱坤赞, 岑可法 2015 物理学报 64 114209]
[14] Li J C, Peng Z J, Fu Y C 2011 Chin. Phys. Lett. 28 064201
[15] Zhang Q X, L X X, Yu Q T, Liu G Y 2009 Chin. Phys.. 18 2764
[16] Lu X W, Li J Z, Chen H Y 2010 Chin. Phys. Lett. 27 104209
[17] Li J C 2012 Acta Phys. Sin. 61 134203(in Chinese) [李俊昌 2012 物理学报 61 134203]
[18] Kim M K 2012 Opt. Lett. 37 2694
[19] Rosen J, Brooker G 2007 Opt. Lett. 32 912
[20] Rosen J, Brooker G 2008 Nat. Photon. 2 190
[21] Rosen J, Brooker G 2012 Adv. Opt. Techn. 1 151
[22] Shi X, Zhu W F, Yuan B, Du Y L, Gong Q X, Guo M T, Liang E J, Ma F Y 2015 Chin. J. Las. 42 265(in Chinese) [石侠, 朱五凤, 袁斌, 杜艳丽, 弓巧侠, 郭茂田, 梁二军, 马凤英 2015 中国激光 42 265]
[23] Bouchal P, Bouchal Z 2012 Opt. Lett. 37 2949
[24] Li J C, Song Q X, Pascal P, Gui J B, Lou Y L 2014 Chin. J. Las. 41 81(in Chinese) [李俊昌, 宋庆和, Picart Pascal, 桂进斌, 楼宇丽 2014 中国激光 41 81]
-
[1] Gabor D 1948 Nature 161 777
[2] Mertz L, Young N O 1962 Optical Instruments and Techniques London, United Kingdom, July 11-14, 1961 p305
[3] Wan Y, Wang D, Man T 2014 Opt. Express 22 8565
[4] Kim M K 2013 Opt. Express 21 9636
[5] Naik D N, Pedrini G, Osten W 2013 Opt. Express 21 3990
[6] Rosen J, Brooker G 2007 Opt. Express 15 2244
[7] Cochran G 1966 J. Opt. Soc. Am. 56 1513
[8] Stroke G W, Restrick R C 1965 Appl. Phys. Lett. 7 229
[9] Goodman J W, Lawrence R W 1967 Appl. Phys. Lett. 11 77
[10] Huang T S 1971 Proc. IEEE 59 1335
[11] Schnars U, Jptner W P O 2002 Meas. Sci. Technol. 13 R85
[12] Schnars U, Jptner W 1994 Appl. Opt. 33 179
[13] Yang J, Wu X C, Wu Y C, Yao L C, Chen L H, Qiu K Z, Cen K F 2015 Acta Phys. Sin. 64 114209(in Chinese) [阳静, 吴学成, 吴迎春, 姚龙超, 陈玲红, 邱坤赞, 岑可法 2015 物理学报 64 114209]
[14] Li J C, Peng Z J, Fu Y C 2011 Chin. Phys. Lett. 28 064201
[15] Zhang Q X, L X X, Yu Q T, Liu G Y 2009 Chin. Phys.. 18 2764
[16] Lu X W, Li J Z, Chen H Y 2010 Chin. Phys. Lett. 27 104209
[17] Li J C 2012 Acta Phys. Sin. 61 134203(in Chinese) [李俊昌 2012 物理学报 61 134203]
[18] Kim M K 2012 Opt. Lett. 37 2694
[19] Rosen J, Brooker G 2007 Opt. Lett. 32 912
[20] Rosen J, Brooker G 2008 Nat. Photon. 2 190
[21] Rosen J, Brooker G 2012 Adv. Opt. Techn. 1 151
[22] Shi X, Zhu W F, Yuan B, Du Y L, Gong Q X, Guo M T, Liang E J, Ma F Y 2015 Chin. J. Las. 42 265(in Chinese) [石侠, 朱五凤, 袁斌, 杜艳丽, 弓巧侠, 郭茂田, 梁二军, 马凤英 2015 中国激光 42 265]
[23] Bouchal P, Bouchal Z 2012 Opt. Lett. 37 2949
[24] Li J C, Song Q X, Pascal P, Gui J B, Lou Y L 2014 Chin. J. Las. 41 81(in Chinese) [李俊昌, 宋庆和, Picart Pascal, 桂进斌, 楼宇丽 2014 中国激光 41 81]
计量
- 文章访问数: 7347
- PDF下载量: 187
- 被引次数: 0