搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地面核磁偏共振响应特征与复包络反演方法

蒋川东 王琦 杜官峰 易晓峰 田宝凤

引用本文:
Citation:

地面核磁偏共振响应特征与复包络反演方法

蒋川东, 王琦, 杜官峰, 易晓峰, 田宝凤

Characteristics of surface nuclear magnetic off-resonance signal and complex envelope inversion

Jiang Chuan-Dong, Wang Qi, Du Guan-Feng, Yi Xiao-Feng, Tian Bao-Feng
PDF
导出引用
  • 地面核磁共振(surface nuclear magnetic resonance,SNMR)方法在地下水探测领域具有直接、定量和解释唯一等优势,但是由于地磁场存在不均匀、随时间变化和易受噪声影响等难以确定的问题,导致偏共振激发,严重影响反演结果的准确性.本文基于地面核磁偏共振(surface nuclear magnetic off-resonance,SNMOR)模型和相应的核函数表达式,讨论了频率偏量对偏共振信号的影响,并提出了基于系统相位自动搜索和信号实部与虚部同时参与的复包络反演方法.通过仿真模型和反演结果对比得到:偏共振信号相位随频率的增加而增大,仿真模型中的信号幅度最大提高了65.9%;当频率偏量大于2 Hz时,利用SNMOR核函数的反演结果的准确度明显优于SNMR核函数的结果;当噪声较大时,复包络方法充分利用测量数据的有用信息,比常规幅度反演具有更高的稳定性和可靠性.最后,通过野外实测数据和反演结果,验证了本文提出的SNMOR模型和复包络反演方法的有效性和准确性,为地下水探测领域提供了新的技术手段.
    As a new groundwater exploration method, noninvasive surface nuclear magnetic resonance (SNMR) has the benefits of direct, quantitative and uniqueness estimation of water content and relaxation time (T2*) in the near surface groundwater exploration. In practice, the earth magnetic field is difficult to be determined accurately, due to its inhomogeneity, time-varying and susceptible to ambient noise, which results in off-resonance excitation and serious decrease in accuracy of the inversion result. In this paper, based on the model of surface nuclear magnetic off-resonance (SNMOR) and the expression for the kernel function, the influences of the frequency offset on the amplitude and phase of the free induced decay (FID) signal are discussed, and a complex envelop inversion (CEI) based on automatic matching system phase and involving both the real part and imaginary part of the signal is applied. By comparing the synthetic signals generated from the SNMR and SNMOR models, it can be concluded that the phase of the FID signal significantly changes with the increase of the frequency offset, and the amplitude of the signal can be increased by 65.9% for the synthetic model in this paper. Thus when the frequency offset is greater than 2 Hz, the distribution of water content and T2* from the inversion results using the SNMR kernel will have a serious deviation from the actual model. However, using the SNMOR kernel based on the frequency offset, the inversion results are more accurate, and the maximum error of the water content and T2* are 4.2% and 39.3 ms, respectively. Moreover, synthetic data with different noise levels are inverted by the CEI method and conventional amplitude envelop inversion method (or QTI). The results show CEI obtain better performances in stability and reliability at a high noise level. Finally, a field measurement of SNMOR is conducted in Taipingchi Reservoir near Changchun City, China. The off-resonance FID signals are obviously observed by utilizing the JLMRS instrument and can be used to estimate the frequency offset. The characteristics of the FID signal with the frequency offset confirm the correctness of the SNMOR model. And the inversion result of field data using SNMOR kernel show that the distribution of water content and T2* are consistent with the known geological data from the drillings and other geophysical methods, which is much better than that using the SNMR kernel or conventional amplitude envelop inversion method. Therefore, the validities and accuracies of the SNMOR model and CEI method proposed in this paper are verified, which provides a new idea and technique for groundwater exploration in the near surface.
      通信作者: 易晓峰, yixiaofeng@jlu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:41604083,41504086,41704103)和吉林省自然科学基金(批准号:20160101281JC)资助的课题.
      Corresponding author: Yi Xiao-Feng, yixiaofeng@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41604083, 41504086, 41704103), and the Natural Science Foundation of Jilin Province, China (Grant No. 20160101281JC).
    [1]

    Legtchenko A 2013 Magnetic Resonance Imaging for Groundwater (Hoboken: John Wiley & Sons) p10

    [2]

    Li X, Xiao L Z, Liu H B, Zhang Z F, Guo B X, Yu H J, Zong F R 2013 Acta Phys. Sin. 62 147602(in Chinese) [李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣 2013 物理学报 62 147602]

    [3]

    Behroozmand A A, Keating K, Auken E 2015 Surv. Geophys. 36 27

    [4]

    Hertrich M 2008 Prog. Nucl. Mag. Res. Sp. 53 227

    [5]

    Hrlimann M D 1998 J. Mag. Res. 131 232

    [6]

    Chen Q, Marble A E, Colpitts B G, Balcom B J 2005 J. Mag. Res. 175 300

    [7]

    Grunewald E, Knight R 2012 Geophysics 77 EN1

    [8]

    Legchenko A, Vouillamoz J M, Lawson F M A, Alle C, Descloitres M, Boucher M 2016 Geophysics 81 WB23

    [9]

    Legchenko A, Vouillamoz J M, Roy J 2010 Geophysics 75 L91

    [10]

    Lin J, Jiang C D, Lin T T, Duan Q M, Wang Y J, Shang X L, Fan T H, Sun S Q, Tian B F, Zhao J, Qin S W 2013 Chin. J. Geophys. 56 3619(in Chinese) [林君, 蒋川东, 林婷婷, 段清明, 王应吉, 尚新磊, 范铁虎, 孙淑琴, 田宝凤, 赵静, 秦胜武 2013 地球物理学报 56 3619]

    [11]

    Walbrecker J O, Hertrich M, Green A G 2011 Geophysics 76 G1

    [12]

    Grombacher D, Walbrecker J O, Knight R 2014 Geophysics 79 E329

    [13]

    Irons T P, Li Y 2014 Geophys. J. Int. 199 1372

    [14]

    Grombacher D, Knight R 2015 Geophysics 80 E329

    [15]

    Grombacher D, Mller-Petke M, Knight R 2016 Geophysics 81 WB33

    [16]

    Mueller-Petke M, Yaramanci U 2010 Geophysics 75 WA199

    [17]

    Roy J, Lubczynski M W 2014 Near Surf. Geophys. 12 309

    [18]

    Chen B, Hu X, Li J, Liu Y 2016 Groundwater 55 171

    [19]

    Weichman P B, Lavely E M, Ritzwoller M H 2000 Phys. Rev.. 62 1290

    [20]

    Lehmann-Horn J A, Hertrich M, Greenhalgh S A, Green A G 2011 IEEE Trans. Geosci. Remote. Sens. 49 3878

    [21]

    Bloch F 1946 Phys. Rev. 70 460

    [22]

    Jiang C D, Lin J, Duan Q M, Tian B F, Hao H C 2011 Chin. J. Geophys. 54 2973(in Chinese) [蒋川东, 林君, 段清明, 田宝凤, 郝荟萃 2011 地球物理学报 54 2973]

    [23]

    Walbrecker J O, Hertrich M, Green A G 2009 Geophysics 74 G27

    [24]

    Gnther T, Rcker C, Spitzer K 2006 Geophys. J. Int. 166 506

    [25]

    Jiang C, Liu J, Tian B, Sun S, Lin J, Mller-Petke M 2016 Geophysics 81 E363

  • [1]

    Legtchenko A 2013 Magnetic Resonance Imaging for Groundwater (Hoboken: John Wiley & Sons) p10

    [2]

    Li X, Xiao L Z, Liu H B, Zhang Z F, Guo B X, Yu H J, Zong F R 2013 Acta Phys. Sin. 62 147602(in Chinese) [李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣 2013 物理学报 62 147602]

    [3]

    Behroozmand A A, Keating K, Auken E 2015 Surv. Geophys. 36 27

    [4]

    Hertrich M 2008 Prog. Nucl. Mag. Res. Sp. 53 227

    [5]

    Hrlimann M D 1998 J. Mag. Res. 131 232

    [6]

    Chen Q, Marble A E, Colpitts B G, Balcom B J 2005 J. Mag. Res. 175 300

    [7]

    Grunewald E, Knight R 2012 Geophysics 77 EN1

    [8]

    Legchenko A, Vouillamoz J M, Lawson F M A, Alle C, Descloitres M, Boucher M 2016 Geophysics 81 WB23

    [9]

    Legchenko A, Vouillamoz J M, Roy J 2010 Geophysics 75 L91

    [10]

    Lin J, Jiang C D, Lin T T, Duan Q M, Wang Y J, Shang X L, Fan T H, Sun S Q, Tian B F, Zhao J, Qin S W 2013 Chin. J. Geophys. 56 3619(in Chinese) [林君, 蒋川东, 林婷婷, 段清明, 王应吉, 尚新磊, 范铁虎, 孙淑琴, 田宝凤, 赵静, 秦胜武 2013 地球物理学报 56 3619]

    [11]

    Walbrecker J O, Hertrich M, Green A G 2011 Geophysics 76 G1

    [12]

    Grombacher D, Walbrecker J O, Knight R 2014 Geophysics 79 E329

    [13]

    Irons T P, Li Y 2014 Geophys. J. Int. 199 1372

    [14]

    Grombacher D, Knight R 2015 Geophysics 80 E329

    [15]

    Grombacher D, Mller-Petke M, Knight R 2016 Geophysics 81 WB33

    [16]

    Mueller-Petke M, Yaramanci U 2010 Geophysics 75 WA199

    [17]

    Roy J, Lubczynski M W 2014 Near Surf. Geophys. 12 309

    [18]

    Chen B, Hu X, Li J, Liu Y 2016 Groundwater 55 171

    [19]

    Weichman P B, Lavely E M, Ritzwoller M H 2000 Phys. Rev.. 62 1290

    [20]

    Lehmann-Horn J A, Hertrich M, Greenhalgh S A, Green A G 2011 IEEE Trans. Geosci. Remote. Sens. 49 3878

    [21]

    Bloch F 1946 Phys. Rev. 70 460

    [22]

    Jiang C D, Lin J, Duan Q M, Tian B F, Hao H C 2011 Chin. J. Geophys. 54 2973(in Chinese) [蒋川东, 林君, 段清明, 田宝凤, 郝荟萃 2011 地球物理学报 54 2973]

    [23]

    Walbrecker J O, Hertrich M, Green A G 2009 Geophysics 74 G27

    [24]

    Gnther T, Rcker C, Spitzer K 2006 Geophys. J. Int. 166 506

    [25]

    Jiang C, Liu J, Tian B, Sun S, Lin J, Mller-Petke M 2016 Geophysics 81 E363

  • [1] 王明军, 王婉柔, 李勇俊. 利用平面声场对非均匀大气介质光波传输相位的调控. 物理学报, 2022, 71(16): 164302. doi: 10.7498/aps.71.20220484
    [2] 杨玉晶, 赵汗青, 王鹏飞, 林婷婷. 绝热脉冲磁共振地下水探测技术数值模拟及影响分析. 物理学报, 2020, 69(12): 123301. doi: 10.7498/aps.69.20200015
    [3] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [4] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术. 物理学报, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [5] 戚志明, 梁文耀. 表层厚度渐变一维耦合腔光子晶体的反射相位特性及其应用. 物理学报, 2016, 65(7): 074201. doi: 10.7498/aps.65.074201
    [6] 吴量, 陈方, 黄重阳, 丁国辉, 丁义明. 基于改进非线性拟合的核磁共振T2谱多指数反演. 物理学报, 2016, 65(10): 107601. doi: 10.7498/aps.65.107601
    [7] 田宝凤, 周媛媛, 王悦, 李振宇, 易晓峰. 基于独立成分分析的全波核磁共振信号噪声滤除方法研究. 物理学报, 2015, 64(22): 229301. doi: 10.7498/aps.64.229301
    [8] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制. 物理学报, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [9] 程杨, 姚佰承, 吴宇, 王泽高, 龚元, 饶云江. 基于倏逝场耦合的石墨烯波导光传输相位特性仿真与实验研究. 物理学报, 2013, 62(23): 237805. doi: 10.7498/aps.62.237805
    [10] 施展, 陈来柱, 佟永帅, 郑智滨, 杨水源, 王翠萍, 刘兴军. Terfenol-D/PZT磁电复合材料的磁电相位移动研究. 物理学报, 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [11] 李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣. 优化重聚脉冲提高梯度场核磁共振信号强度. 物理学报, 2013, 62(14): 147602. doi: 10.7498/aps.62.147602
    [12] 陈小艺, 刘曼, 李海霞, 张美娜, 宋洪胜, 滕树云, 程传福. 弱散射体产生的菲涅耳极深区散斑场相位涡旋演化的实验研究. 物理学报, 2012, 61(7): 074201. doi: 10.7498/aps.61.074201
    [13] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用. 物理学报, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [14] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构. 物理学报, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [15] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究. 物理学报, 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [16] 潘克家, 陈 华, 谭永基. 基于差分进化算法的核磁共振T2谱多指数反演. 物理学报, 2008, 57(9): 5956-5961. doi: 10.7498/aps.57.5956
    [17] 徐 敏, 张月蘅, 沈文忠. 半导体远红外反射镜中反射率和相位研究. 物理学报, 2007, 56(4): 2415-2421. doi: 10.7498/aps.56.2415
    [18] 颜森林. 注入半导体激光器混沌调制性能与内部相位键控编码方法研究. 物理学报, 2006, 55(12): 6267-6274. doi: 10.7498/aps.55.6267
    [19] 颜森林. 光纤混沌相位编码保密通信系统理论研究. 物理学报, 2005, 54(5): 2000-2006. doi: 10.7498/aps.54.2000
    [20] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
计量
  • 文章访问数:  6854
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-26
  • 修回日期:  2017-09-29
  • 刊出日期:  2018-01-05

/

返回文章
返回