-
本文对现有相位调制激光多普勒频移测量方法进行了改进,通过定义新的鉴频参量来同时利用相位调制信号直流和交流分量中的有用信息进行多普勒频移测量.由于相位调制信号直流分量中包含着调制信号光的Fabry-Perot干涉仪光强透过率,所以这一改进本质上是将基于Fabry-Perot干涉仪的边缘技术激光多普勒频移测量方法的优势引入到相位调制测量方法中,以提高其自身的性能.理论上证明改进后的相位调制激光多普勒频移测量方法无需对信号光的光强进行测量,所以可以进一步简化探测系统的结构和较少噪声混入的通道.另外,通过对改进前后鉴频和测量灵敏度曲线进行对比,还证明了其具有更高的测量灵敏度和动态范围.实验上对硬目标反射的频移可控信号光进行测量,不但证明了理论的正确性,而且证明了改进后的相位调制激光多普勒频移测量方法,测量动态范围提高约1倍,测量标准偏差降低约35%.
-
关键词:
- 多普勒频移 /
- 相位调制 /
- 拍频 /
- Fabry-Perot干涉仪
Sinusoidal phase-modulated signal light through the Fabry-Perot interferometer can produce a beat signal. Moreover, its amplitude monotonically changes with the signal light frequency. So the beat signal amplitude can be used to measure laser-Doppler-shift. In addition to the beat signal, the phase-modulated signal also contains a direct current (DC) signal, and it still contains a large amount of Doppler-shift information, but the information is not utilized, resulting in the waste of Doppler information. In this paper, this kind of phase-modulated laser-Doppler-shift measurement method is improved to simultaneously utilize the useful information in the DC and beat signal for the Doppler-shift measurement. The specific method is to use the ratio of beat signal amplitude to DC signal amplitude to define a new parameter used in Doppler-shift measurement. The signal light intensity terms in DC and beat signal can be eliminated, so the improved phase-modulated laser-Doppler-shift measurement method does not need to measure the signal light intensity, which makes its structure further simplified and a noise channel eliminated. By comparing the frequency change curves between the newly defined parameter and the beat signal amplitude theoretically, we find that they have the same distribution rule. This theoretical result shows that the improved phase-modulated laser-Doppler-shift measurement method will keep the same working mode as un-improved one, and can inherit its advantages. In theory, by comparing the measurement sensitivity curves, it is proved that the improved phase-modulated laser-Doppler-shift measurement method has higher measurement sensitivity and dynamic range than the un-improved one. The useful information included in the DC signal is the modulated signal light intensity transmittance of Fabry-Perot interferometer. So the improvement is essential to introduce the advantages of edge-technique laser-Doppler-shift measurement method based on the Fabry-Perot interferometer into the phase-modulated method for achieving higher performance. Two phase-modulated laser-Doppler-shift measurement methods before and after improvement are separately used to measure the frequency-shifted controllable signal light reflected by a hard object. The experimental results are in accordance with the theoretical analysis results very well. The comparison of experimental result between the two methods shows that the improved phase-modulated laser-Doppler-shift measurement method can approximately double the measurement dynamic range and reduce about 35% measurement standard deviation compared with the un-improved one.-
Keywords:
- Doppler shift /
- phase-modulated /
- beat signal /
- Fabry-Perot interferometer
[1] Xia H, Dou X, Sun D, Shu Z, Xue X, Han Y, Hu D, Han Y, Cheng T 2012 Opt. Express 20 15286
[2] Du Z H, Li S Q, Jiang C Z, Tao Z F, Gao H, Xie Y 2004 Acta Opt. Sin. 24 834 (in Chinese) [杜振辉, 李淑清, 蒋诚志, 陶知非, 高华, 谢艳 2004 光学学报 24 834]
[3] Yan C H, Wang T F, Zhang H Y, L T, Wu S S 2017 Acta Phys. Sin. 66 234208 (in Chinese) [晏春回, 王挺峰, 张合勇, 吕韬, 吴世松 2017 物理学报 66 234208]
[4] Tang L, Shu Z F, Dong J H, Wang G C, Wang Y T, Xu W J, Hu D D, Chen T D, Dou X K, Sun D S, Cha H 2010 Chin. Opt. Lett. 8 726
[5] Wen F, Ye H, Zhang X, Wang W, Li S, Wang H 2017 Photon. Res. 5 676
[6] Li Y C, Wang C H, Qu Y, Gao L, Chong H, Yang Y, Gao J, Wang A 2011 Chin. Phys. B 20 014208
[7] Li Y C, Wang C H, Gao L, Cong H F, Qu Y 2012 Acta Phys. Sin. 61 044207 (in Chinese) [李彦超, 王春辉, 高龙, 从海芳, 曲杨 2012 物理学报 61 044207]
[8] Bai Y, Ren D M, Zhao W, Qu Y, Qian L, Chen Z 2012 Opt. Express 20 764
[9] Bai Y, Ren D M, Zhao W, Qian L, Chen Z, Liu Y 2010 Appl. Opt. 49 4018
[10] Li Y C, Wang Y Q, Liu C Y, Yang J R, Ding Q 2016 Appl. Phys. B 122 24
[11] Fang S, Bi Z Y, Yao Y 2015 Chin. Phys. B 24 074202
[12] Li C Q, Wang T F, Zhang H Y, Xie J J, Liu L S, Guo J 2016 Acta Phys. Sin. 65 084206 (in Chinese) [李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲 2016 物理学报 65 084206]
[13] Xia H, Sun D, Yang Y, Shen F, Dong J, Kobayashi T 2007 Appl. Opt. 46 7120
[14] Imaki M, Kobayashi T 2005 Appl. Opt. 44 6023
[15] Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211
[16] Shen F H, Shu Z F, Sun D S, Wang Z C, Xue X H, Chen T D, Dou X K 2012 Acta Phys. Sin. 61 030702 (in Chinese) [沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康 2012 物理学报 61 030702]
[17] Du J, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Acta Phys. Sin. 62 184206 (in Chinese) [杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰 2013 物理学报 62 184206]
[18] Qu Y C, Du J, Zhao W J, Geng L J, Liu C, Zhang R L, Chen Z L 2014 Acta Photon. Sin. 34 1112001 (in Chinese) [曲彦臣, 杜军, 赵卫疆, 耿利杰, 刘闯, 张瑞亮, 陈振雷 2014 光子学报 34 1112001]
[19] Du J, Qu Y C, Zhao W J, Geng L J, Liu C, Zhang R L, Chen Z L 2014 Acta Opt. Sin. 34 0712001 (in Chinese) [杜军, 曲彦臣, 赵卫疆, 耿利杰, 刘闯, 张瑞亮, 陈振雷 2014 光学学报 34 0712001]
[20] Eric D B 2001 Am. J. Phys. 69 79
[21] Zhao L, Tian X J, Liang L, Zheng C T, Wang Y D 2012 J. Jilin Univ. 30 5 (in Chinese) [赵玲, 田小建, 梁磊, 郑传涛, 王一丁 2012 吉林大学学报 30 5]
[22] Zheng Z, Zhao C, Zhang H, Yang S, Zhang D, Yang H, Liu J 2016 Opt. Laser Technol. 80 169
[23] Yang H Z, Zhao C M, Zhang H Y, Yang S H, Li C 2017 Acta Phys. Sin. 66 184201 (in Chinese) [杨宏志, 赵长明, 张海洋, 杨苏辉, 李晨 2017 物理学报 66 184201]
-
[1] Xia H, Dou X, Sun D, Shu Z, Xue X, Han Y, Hu D, Han Y, Cheng T 2012 Opt. Express 20 15286
[2] Du Z H, Li S Q, Jiang C Z, Tao Z F, Gao H, Xie Y 2004 Acta Opt. Sin. 24 834 (in Chinese) [杜振辉, 李淑清, 蒋诚志, 陶知非, 高华, 谢艳 2004 光学学报 24 834]
[3] Yan C H, Wang T F, Zhang H Y, L T, Wu S S 2017 Acta Phys. Sin. 66 234208 (in Chinese) [晏春回, 王挺峰, 张合勇, 吕韬, 吴世松 2017 物理学报 66 234208]
[4] Tang L, Shu Z F, Dong J H, Wang G C, Wang Y T, Xu W J, Hu D D, Chen T D, Dou X K, Sun D S, Cha H 2010 Chin. Opt. Lett. 8 726
[5] Wen F, Ye H, Zhang X, Wang W, Li S, Wang H 2017 Photon. Res. 5 676
[6] Li Y C, Wang C H, Qu Y, Gao L, Chong H, Yang Y, Gao J, Wang A 2011 Chin. Phys. B 20 014208
[7] Li Y C, Wang C H, Gao L, Cong H F, Qu Y 2012 Acta Phys. Sin. 61 044207 (in Chinese) [李彦超, 王春辉, 高龙, 从海芳, 曲杨 2012 物理学报 61 044207]
[8] Bai Y, Ren D M, Zhao W, Qu Y, Qian L, Chen Z 2012 Opt. Express 20 764
[9] Bai Y, Ren D M, Zhao W, Qian L, Chen Z, Liu Y 2010 Appl. Opt. 49 4018
[10] Li Y C, Wang Y Q, Liu C Y, Yang J R, Ding Q 2016 Appl. Phys. B 122 24
[11] Fang S, Bi Z Y, Yao Y 2015 Chin. Phys. B 24 074202
[12] Li C Q, Wang T F, Zhang H Y, Xie J J, Liu L S, Guo J 2016 Acta Phys. Sin. 65 084206 (in Chinese) [李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲 2016 物理学报 65 084206]
[13] Xia H, Sun D, Yang Y, Shen F, Dong J, Kobayashi T 2007 Appl. Opt. 46 7120
[14] Imaki M, Kobayashi T 2005 Appl. Opt. 44 6023
[15] Du J, Ren D M, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Chin. Phys. B 22 024211
[16] Shen F H, Shu Z F, Sun D S, Wang Z C, Xue X H, Chen T D, Dou X K 2012 Acta Phys. Sin. 61 030702 (in Chinese) [沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康 2012 物理学报 61 030702]
[17] Du J, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Acta Phys. Sin. 62 184206 (in Chinese) [杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰 2013 物理学报 62 184206]
[18] Qu Y C, Du J, Zhao W J, Geng L J, Liu C, Zhang R L, Chen Z L 2014 Acta Photon. Sin. 34 1112001 (in Chinese) [曲彦臣, 杜军, 赵卫疆, 耿利杰, 刘闯, 张瑞亮, 陈振雷 2014 光子学报 34 1112001]
[19] Du J, Qu Y C, Zhao W J, Geng L J, Liu C, Zhang R L, Chen Z L 2014 Acta Opt. Sin. 34 0712001 (in Chinese) [杜军, 曲彦臣, 赵卫疆, 耿利杰, 刘闯, 张瑞亮, 陈振雷 2014 光学学报 34 0712001]
[20] Eric D B 2001 Am. J. Phys. 69 79
[21] Zhao L, Tian X J, Liang L, Zheng C T, Wang Y D 2012 J. Jilin Univ. 30 5 (in Chinese) [赵玲, 田小建, 梁磊, 郑传涛, 王一丁 2012 吉林大学学报 30 5]
[22] Zheng Z, Zhao C, Zhang H, Yang S, Zhang D, Yang H, Liu J 2016 Opt. Laser Technol. 80 169
[23] Yang H Z, Zhao C M, Zhang H Y, Yang S H, Li C 2017 Acta Phys. Sin. 66 184201 (in Chinese) [杨宏志, 赵长明, 张海洋, 杨苏辉, 李晨 2017 物理学报 66 184201]
计量
- 文章访问数: 6959
- PDF下载量: 236
- 被引次数: 0